chung to rang 101995 + 8 chia cho 9 la 1 so tu nhien
can gap lam.sos
chia so tu nhien a cho 9 dc so du la 4.chia so tu nhien b cho 9 dc so du la 5.chia so tu nhien c cho 9 dc so du la 8
a, chung to rang a+b chia het cho 9
b,tim so du chia b+c cho 9
cam mn nhieu lam lun a
Các số a; b; c có dạng
a=9m+4; b=9n+5; c=9p+8
a/ a+b=9m+4+9n+5=9(m+n)+9 chia hết cho 9
b/ b+c=9n+5+9p+8=9(n+p)+9+4
=> b+c chia 9 dư 4
a)Gọi số a =9p+4
b=9q+5
=>a+b=9p+4+9q+5=9p+9q+9=9.(p+q+1)\(⋮\)9
Vậy a+b chia hết cho 9 khi a chia 9 dư 4 và b chia 9 dư 5
b)Gọi số b=9q+5
c=9k+8
=>b+c=9q+5+9k+8=9q+9k+13=9.(q+k+1)+4
Mà 9.(q+k+1)\(⋮\)9
=>b+c chia 9 dư 4
Vậy b+c chia 9 dư 4 khi b chia 9 dư 5 và c chia 9 dư 8
Chúc bn học tốt
cho so tu nhien n=(10*10...*10+8)/9.Hay chung to rang n la so tu nhien
a) Chung to rang tong 3 so tu nhien lien tiep co 1 so chia het cho 3.
b) Chung to rang tong cua 3 so tu nhien lien tiep la 1 so chia het cho 3.
b)goi 3 số tự nhiên la a, a+1, a+2
tổng 3 số la 3a+3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
Chung minh rang
A) 2^10+2^11+2^12 chia cho 7la mot so tu nhien
B) 8^10-8^9-8^8 chia cho 55 la mot so tu nhien
a. 2^10+2^11+2^12 chia cho 7 là một số tự nhiên
2^10+2^11+2^12
= 2^10 + 2^10 x2 + 2^10 x 2^2
=2^10 x ( 1+2+2^2)
=1024 x 7
= 7168
Vậy 2^10+2^11+2^12 chia cho 7 bằng 1024 và 1024 là một số tự nhiên
Cho so a= 36.q + 15 voi q la so tu nhien
A. Chung to rang a khong chia het cho 2
B. Chung to rang a chia het cho 3 va a khong phai la so nguyen to
Chung to rang :
Tong cua ba so tu nhien lien tiep la so chia het cho 3.
Tong cua bon so tu nhien liep tiep la so khong chia het cho4.
Gọi 3 số đó là a; a+1; a+2
Ta có: a+ a+1 + a+2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
gọi bốn số tự nhiên liên tiếp là a,a+1,a+2,a+3
ta có a+(a+1) +(a+2)+(a+3) = 4a +6 không chia hết cho 4
vì 4a chia hết cho 4 , 6 không chia hết cho 4
suy ra bốn số tự nhiên liên tiếp không chia hết cho 4
**** nhé
- gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
vậy tổng của 3 số liên tiếp chia hết cho 3
- gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
gọi 3 số đó là a-1,a,a+1 (a thuộc Z)
ta có (a-1)+a+(a+1)=3a
vì 3chia hết cho 3 nên3a chia hết cho 3
diều này chứng tỏ tổng 3 số tự nhiên liên tiếp chia hết cho 3
cho b la mot so tu nhien khong chia het cho 3 . chung to rang b^2 -1 chia het cho 3
b không chia hết cho 3 nên ta xét 2 trường hợp:
TH1: b chia 3 dư 1 nên b = 3k + 1
\(\Rightarrow\left(3k+1\right)^2-1=9k^2+6k+1-1=3k\left(3k+3\right)\)
Vì \(3⋮3\)
Do đó \(3k\left(3k+2\right)⋮3\Rightarrow\left(3k+1\right)^2-1⋮3\)
TH2: b chia 3 dư 2 nên b = 3k + 2
\(\Rightarrow\left(3k+2\right)^2-1=9k^2+12k+4-1=3k\left(3k+4\right)\)
vì \(3⋮3\)
Do đó \(3k\left(3k+4\right)⋮3\Rightarrow\left(3k+2\right)^2-1⋮3\)
Vậy với b là một số tự nhiên không chia hết cho 3 thì \(b^2-1⋮3\)
b là số tự nhiên không chia hết cho 3 => b có dạng 3k+1 hoặc 3k+2 (k thuộc N*)
Th1: b=3k+1=> b^2-1=9.k^2+6k+1-1=9.k^2+6k chia hết cho 3
Th2: b=3k+2 => b^2-1=9.k^2+12k+4-1=9.k^2+12k+3 chia hết cho 3
Vậy với mọi b là số tự nhiên không chia hết cho 3 thì b^2-1 chia hết cho 3
b là số tự nhiên không chia hết cho 3 => b có dạng 3k+1 hoặc 3k+2 (k thuộc N*)
Th1: b=3k+1=> b^2-1=9.k^2+6k+1-1=9.k^2+6k chia hết cho 3
Th2: b=3k+2 => b^2-1=9.k^2+12k+4-1=9.k^2+12k+3 chia hết cho 3
Vậy với mọi b là số tự nhiên không chia hết cho 3 thì b^2-1 chia hết cho 3
Ban hoa dem so tu nhien a chia cho 28 thi duoc so du la 27 sau do ban hoa dem so tu nhien a chia cho 32 thi duoc so du la 28. hay chung to rang ban hoa thuc hien sai it nhat 1 phep tinh
Với vế 1: bạn đem A chia cho 28 có dư là 27 nên A là số lẻ vì 28 là số chẵn mà 27 lại là lẻ.
Nhưng với vế 2 thì lai khác vì 32 và 28 đều là chẵn nên A là chẵn.
Nên chắc chán có 1 phép tính bạn làm sai.
Chung to rang tich n(n+1)(n+5) la mot so chia het cho 3 voi moi so tu nhien n
đặt A=n(n+1)(n+5)
-nếu n chia hết cho 3=>A chia hết cho 3
-nếu có dạng 3k+1(k là STN)
=>n+5=3k+1+5=3(2k+3) chia hết cho 3
=>A chia hết cho 3
-nếu n có dạng 3k+2
=>n+1=3k+3=3(k+1) chia hết cho 3
=>A chia hết cho 3
Do n là số tự nhiên nên n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 (k thuộc N)
+ Với n = 3k thì n chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 1 thì n + 5 = 3k + 6 = 3.(k + 2) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 2 thì n + 1 = 3k + 3 = 3.(k + 1) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
Chứng tỏ tích n.(n + 1).(n + 5) là 1 số chia hết cho 3 với mọi số tự nhiên n