Tìm một số nhỏ nhất mà nếu lấy số đó chia cho 2, cho 3, cho 5 thì dư 1 nhưng số đó chia cho 13 thì vừa hết.
Tìm số tự nhiên nhỏ nhất,biết rằng nếu chia số đó cho 3 thì dư 1; chia cho 4 dư 2; chia cho 5 dư 3; chia cho 6 dư 4 và chia hết cho 13
cảm ơn bạn rất nhiều, nhưng kết quả sai hết rồi và phải bằng 598 mới đúng
Tìm một số tự nhiên nhỏ nhất biết rằng nếu đem số đó chia cho 8 thì dư 6, chia cho 12 thì dư 10, chia cho 15 thì dư 13 và số đó chia hết cho 23
Tìm một số tự nhiên nhỏ nhất biết rằng nếu đem số đó chia cho 8 thì dư 6, chia cho 12 thì dư 10, chia cho 15 thì dư 13 và số đó chia hết cho 23
1. Tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2,3,4,5 và 6 đều dư 1 nhưng khi chia cho 7 thì không còn dư.
2. Tìm một số tự nhiên nhỏ hơn 200, biết rằng số đó không chia hết cho 2, chia cho 3 dư 1, chia cho 5 thiếu 1 và chia hết cho 7.
Viết cách giải ra giúp mình nha!
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Tìm số tự nhiên nhỏ nhất,biết rằng nếu chia số đó cho 3 thì dư 1 ; chia cho 4 dư 2; chia cho 5 dư 3 ; chia cho 6 dư 4 và chia hết cho 13
Cố gắng giúp mình nhé ! Mình đang cần gấp.
có đến nỗi ra quần không?
bằng 358
Tìm số nhỏ nhất chia hết cho 7 ,khi chia số đó cho 2 thì dư 1,chia số đó cho 3 thì dư 2 ,chia cho 4 thì dư 3, chia cho 5 thì dư 4 và chia cho 6 thì dư 5.
nhầm số đó chia hết cho 7
vậy số đó là 119
Số cần tìm là:119
Tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho 3 thì dư 1 ; chia cho 4 dư 2 ; chia cho 5 dư 3 ; chia cho 6 dư 4 và chia hết cho 13.
Tìm một số tự nhiên biết rằng : nếu chia số đó cho 2 thì dư 1, chia cho 3 thì dư 2,chia cho 4 thì dư 3,chia cho 5 thì dư 4 nhưng chia hết cho 7.
Ai nhanh = tick
Cách 1:Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
cách 2:Nhận xét:
3 - 1 = 2
4 - 2 = 2
5 - 3 = 2
6 - 4 = 2
Gọi số cần tìm là a
thì a + 2 chia hết cho cả 3,4,5,6
Ta có 3 = 3 x 1
4 = 2 x 2
3 = 5 x 1
6 = 3 x 2
3 x 2 x 2 x 5 = 60
a + 2 là bội của 60
a = (60 - 2 ) + k x 60
a= 58 + k x 60
a chia hết cho 11 mà 58: 11 = 5 (dư 3); 11 - 3 = 8
Vậy (k x 60) : 11 ( dư 8)
Dùng phép thử chọn để tìm k ta được k = 6
Vậy a = 58 + 6 x 60 = 418
Gọi số cần tìm là a(a thuộc N*)
Vì a chia 2 dư 1 , chia 3 dư 2 , chia 4 dư 3 , chia 5 dư 4
=> a+1 chia hết cho 2,3,4,5
=> a+1thuộcBC(2,3,4,5)
Ta có :
2=2
3=3
4=22
5=5
=>BCNN(2,3,4,5)=22 * 3 * 5=60
=>a+1thuộc B(60)={0;60;120;180;240;300;360;420;....}
=> a thuộc {59;119;179;239;299;359;419;....}
Vì a chia hết cho 7 ; a nhỏ nhất => a =179
Vậy số cần tìm là 179
(Điều kiện a nhỏ nhất là mình thêm nếu không a sẽ có nhiều kết quả thực ra la vô số kết quả)
1.tìm số tự nhiên nhỏ nhất,biết rằng số đó chia cho 5 thì dư 1 và chia cho 7 dư 5
2.bạn nam nghĩ ra một số có ba chữ số.nếu bơt số đó đi 8 thì được số chia hết cho 7,nếu bớt số đó đi 9 thì được số chia hết cho 8,nếu bớt số đó 10 thì được số chia hết cho 9.hỏi bạn nam nghĩ ra số nào?