So sánh A = 2003 2003 + 1 2003 2004 + 1 và 2003 2002 + 1 2003 2003 + 1 .
A. A < B
B. A = B
C. A > B
D. Không kết luận được
so sánh A= \(\dfrac{2003^{2003}+1}{2003^{2004}+1}\)
B=
\(\dfrac{2003^{2002}+1}{2003^{2003}+1}\)
Ta có: \(2003^{2003}+1=2003^{2002+1}+1và2003^{2004}+1=2003^{2003+1}+1\)
\(\Rightarrow A>B\)
So sánh A=2004-2003/2004+2003 và B=2004^2-2003^2/2004^2+2003^2
A = \(\frac{2004-2003}{2004+2003}\)và B = \(\frac{2004^2-2003^2}{2004^2+2003^2}\)
Ta đặt : 2004 = x
2003 = y
Theo tính chất cơ bản của phân thức , ta có :
\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+y^2+2xy}\) ( 1 )
Vì x > 0 , y > 0 nên x2 + y2 + 2xy > x2 + y2
\(\Rightarrow\frac{x^2-y^2}{x^2+y^2+2xy}< \frac{x^2-y^2}{x^2+y^2}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Vậy A < B
https://h.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+2+ph%C3%A2n+s%E1%BB%91++A=+2004%5E2003++1+/+2004%5E2004++1++B=2004%5E2002+1/2004%5E2003++1&id=238505
http://pitago.vn/question/so-sanh-a-frac2004-20032004-2003-va-b-2801.html
So sánh:2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath
So sánh 2 phân số sau: A = 20032003 + 1 / 20032004 + 1 và B = 20032002 + 1 / 20032003 + 1
Có:
2003A=20032004+2003/20032004+1 = 20032004+1+2002/20032004+1= 1+ 2002/20032004+12003A= 20032003+2003/20032003+1 .........= 1 + 2002/20032003+1Vì 1+ 2002/20032004+1<1+ 20022003+1nên 2003A<2003BNên A<B !!!!!!!!!!!So Sánh 2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
so sánh 2 phân số
A= 2004^2003 +1 / 2004^2004 +1
B=2004^2002+1/2004^2003 +1
So sánh:
2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
So sánh A=10^2004+1/10^2003+1 B=10^2003+1/10^2002+1
\(A=\dfrac{10^{2004}+1}{10^{2003}+1}>\dfrac{10^{2004}+1+9}{10^{2003}+1+9}=\dfrac{10^{2004}+10}{10^{2003}+10}.\\ =\dfrac{10\left(10^{2003}+1\right)}{10\left(10^{2002}+1\right)}=\dfrac{10^{2003}+1}{10^{2002}+1}=B.\\ \Rightarrow A>B.\)
so sánh
2002/2003 và 2003/2004
-2002/2003 và -2005/-2004
a) Ta có: \(1-\frac{2002}{2003}=\frac{1}{2003}\)
\(1-\frac{2003}{2004}=\frac{1}{2004}\)
Vì \(\frac{1}{2003}>\frac{1}{2004}\)
\(\Rightarrow\frac{2002}{2003}>\frac{2003}{2004}\)
b) Ta có: \(\frac{-2005}{-2004}=\frac{2005}{2004}>1\)
\(\frac{-2002}{2003}
So sánh 2 phân số sau: \(A=\frac{2003^{2003}+1}{2003^{2004}+1}\)\(B=\frac{2003^{2002}+1}{2003^{2003}+1}\)
(tạm trình bày vậy vì phần đánh văn bản còn yếu, bạn hểu và trình bày đúng lại giúp mình nhé)
A:
20032003+1=20032002.2003+1=20032002+1
20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)
B:
20032002+1=20032002+1
20032003+1=20032002.2003+1
Suy ra: A=B
A =\(\frac{2003^{2003}+1}{2003^{2004}+1}\)=\(\frac{2003^{2003}+1}{2003^{2003}.2003+1}\)=\(\frac{1}{2003+1}\)
B = \(\frac{2003^{2002}+1}{2003^{2003}+1}\)=\(\frac{2003^{2002}+1}{2003^{2002}.2003+1}\)=\(\frac{1}{2003+1}\)
Vậy A=B