Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Ngoc Vy Phuong
Xem chi tiết
Duong Thi Hai
Xem chi tiết
Nguyễn Ngọc Quý
8 tháng 1 2016 lúc 5:28

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{20}.\left(1+2+....+20\right)\)

\(=1+\frac{1}{2}\times\frac{2.3}{2}+\frac{1}{3}\times\frac{3.4}{2}+...+\frac{1}{20}\times\frac{20.21}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)

\(=\frac{\left(2+21\right).20:2}{2}=\frac{230}{2}=115\)

Nguyễn Ngọc Quý
8 tháng 1 2016 lúc 5:24

Số cuối là

\(\frac{1}{10}.\left(1+2+3+...+10\right)\) hay \(\frac{1}{20}.\left(1+2+3+...+20\right)\) ??

Đào Ngọc Mai
Xem chi tiết
╰Nguyễn Trí Nghĩa (team...
6 tháng 3 2020 lúc 20:52

Đặt \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+..............+\frac{1}{1+2+3+...+20}\)

\(\Rightarrow A=\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+3\right).3}{2}}+\frac{1}{\frac{\left(1+4\right).4}{2}}+.............+\frac{1}{\frac{\left(1+20\right).20}{2}}\)

\(\Rightarrow A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...........+\frac{2}{20.21}\)

\(\Rightarrow A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..............+\frac{1}{20.21}\right)\)

\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{20}-\frac{1}{21}\right)\)

\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{21}\right)=2.\left(\frac{21}{42}-\frac{2}{42}\right)=2.\frac{19}{42}=\frac{19}{21}\)

Vậy \(A=\frac{19}{21}\)

Chúc bn học tốt

Khách vãng lai đã xóa
Huyen Hoang
Xem chi tiết
Lương thị mỹ trầm
Xem chi tiết
Hoang Hung Quan
2 tháng 4 2017 lúc 18:28

Ta có:

\(B=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)\)

\(=1+\dfrac{1}{2}.\dfrac{2\left(2+1\right)}{2}+\dfrac{1}{3}.\dfrac{3\left(3+1\right)}{2}+...+\dfrac{1}{20}.\dfrac{20\left(20+1\right)}{2}\)

\(=\dfrac{2}{2}+\dfrac{2+1}{2}+\dfrac{3+1}{2}+...+\dfrac{20+1}{2}\)

\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{20}{2}\)

\(=\dfrac{2+3+4+...+20}{2}=\dfrac{\dfrac{20\left(20+1\right)}{2}-1}{2}\)

\(=\dfrac{209}{2}\)

Vậy \(B=\dfrac{209}{2}\)

ÍìÍ Manbo ÍìÍ love ÌíÌ
Xem chi tiết
hotboy
Xem chi tiết
tạ quang vũ
Xem chi tiết
Đinh Đức Hùng
2 tháng 3 2017 lúc 19:29

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+...+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)

\(=\frac{2}{2}+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{20+1}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{20}{2}\)

\(=\frac{2+3+4+...+20}{2}=\frac{\frac{20\left(20+1\right)}{2}-1}{2}=\frac{209}{2}\)

ke tui
Xem chi tiết