when N is divided by 12 the remainder is 9 when N divided by 6 the remainder is ..
khi N được chia cho 12 còn lại là 9 khi N chia cho 6 phần còn lại là ..........
When N is divided by 12, the remainder is 9. When N is divided by 6, the remainder is…………
when N is divided by 12,the remainder is 9
when N is divided by 6,the remainder is.......
Dịch: N chia 12 dư 9. Vậy N chia 6 dư bao nhiêu?
Lấy 1 số cụ thể: N = 21
21 : 12 = 1 (dư 9)
21 : 6 = 3 (dư 3)
Vậy N chia cho 6 dư 3
1 . A is the set of factor of 12 more than 6 . How many elements does the set A have ?
2 . Find the remainder when 98387 + 1234 is divided by 9 ?
3 . given that b513 is divisible by 9 . what is the value of b ?
4 . find the remainder of 9287 when is it divided by 3
ai nhanh tay làm rùm tớ , tớ sẽ tặng cho 1 tích
Câu 1:Thì mình không biết
Câu 2:0
Câu 3:9
Câu 4:2
câu 1: there is 1 element.
còn lại thì bạn Võ Nguyễn Đăng Khoa làm rồi nha.^_^
cho mình hỏi bài này với: P is a natural number that is written by 2016 digit 4. The remainder when P is divided by 15 is...
đề bài nghĩa là: P là một số tự nhiên được viết bởi 2016 chữ số 4. Phần còn lại khiP được chia cho 15 là ...
What is the remainder when the following expression is divided by 7?
Khi lấy kết quả của phép tính dưới đây chia cho 7 ta sẽ nhận được số dư là bao nhiêu?
(1×2×3) + (2×3×4) + (3×4×5) + (4×5×6) + (5×6×7) + (6×7×8) + (7×8×9)
When x is divided by 6 , the remainder is 5
The remainder when x is devided by 3 is
When x is divided by 6 , the remainder is 5
The remainder when x is devided by 3 is
đa: 2
When x is divided by 6 , the remainder is 5
The remainder when x is devided by 3 is
Answer: 2
A 3 - digit number when divided by 57, the remainder is 27, when divided by 217 the remainder is 60. Find the number.
Call a is the 3-digit number which divied by 57, the remainder is 27, divided by 217, the remainder is 60.
\(\Rightarrow\)a-27\(⋮\)57
\(\Rightarrow\)a-60\(⋮\)217
Because 684 is a multiple of 57 so:
\(\Rightarrow\)a-27-684\(⋮\)57\(\Rightarrow\)a-771\(⋮\)57
Because 651 is a multiple of 217 so:
\(\Rightarrow\)a-60-651\(⋮\)217\(\Rightarrow\)a-771\(⋮\)217
\(\Rightarrow\)a-771 \(\in\)CM(217;57)
\(\Rightarrow\)a-771\(\in\){0;12369;...}
\(\Rightarrow\)a\(\in\){771;13140;...}
Because a is a 3-digit number so a = 771.
The number is 771.
When 9^10^11-5^9^10 is divided by 13, the remainder is
When 9^10^11-5^9^10 is divided by 13, the remainder is