Cho A = x 2 - y z + z 2 , B = 3 y z - z 2 + 5 x 2 .Tính C = 2 A + 3 B
A. 15 x 2 - z 2 + 7 y z
B. 17 x 2 - z 2 + 7 y z
C. - 17 x 2 + z 2 + 7 y z
D. 17 x 2 - z 2 + 9 y z
Cho x, y, z thuộc số dương và :
A=(x^2 /x+y)+(y^2/y+z)+(z^2/z+x)
B=(y^2/x+y)+(z^2/y+z)+(x^2/z+x)
Chứng minh A=B
Cho a,b,c là các số thực # 0. Tìm x,y,z là số thực # 0 thỏa mãn x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
cho a,b,c là các số thực # 0. Tìm các số thực x,y,z #0 thỏa mãn: x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
jup mik với a, cho a/b=c/d Chứng minh rằng (a^2+ac)/(c^2-ac)=(b^2+bd)/(d^2-bd)
b,cho 3 số x, y, z thỏa mãn y khác z và x+y khác z và z^2 = 2(xz + yz - xy) chứng minh rằng (x^2 + (x-z)^2)/(y^2+(y-z)^2)= x-z/y-z
ai nhanh mk tik cho
cho x, y ,z; A=y/z+z/y; B=x/z+z/x; C=x/y+y/x. Tính giá trị biểu thức A^2+B^2+c^2-ABC
Cho x,y,z khác 0 và A=y/z+z/y;B=x/z+z/x;C=x/y+y/x.Tính giá trị biểu thức: A^2+B^2 +C^2-A*B*C
cho a, b, c, x, y, z khác 0 thỏa mãn: x/a = y/b = z/c chứng minh: a^2/x + b^2/y + c^2/z +(a+b+c)^2/x+y+z
\(\text{Đặt }\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
Khi đó : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\left(1\right);\)
\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{k\left(a+b+c\right)}=\frac{a+b+c}{k}\left(2\right)\)
Từ (1) và (2) => \(\frac{a^2}{x}+\frac{b^2}{y}=\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\left(\text{đpcm}\right)\)
hình như bạn ghi sai đề rồi kìa
cho a,b, c, x, y, z :{a/x+b/y+c/z=0;x/a+y/b+z/c=1
CMR:x^2/a^2+y^2/b^2+z^2/c^2=1
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
cho a, b, c, x, y, z:{a/x+b/y+c/z=0;x/a+y/b+z/c=1
CMR:x^2/a^2+y^2/b^2+z^2/c^2=1
Ta có :\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
Lại có \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
=> \(\left(\frac{x}{a}\right)^2+\left(\frac{y}{b}\right)^2+\left(\frac{z}{c}\right)^2+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)
=> \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xyc}{abc}+\frac{2ayz}{abc}+\frac{2bxz}{abc}=1\)
=> \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2}{abc}\left(xyc+ayz+bxz\right)=1\)
=> \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(\text{vì }xyc+ayz+bxz=0\right)\)(đpcm)