Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Bé Thần Nông
Xem chi tiết
Minh Hiền
23 tháng 12 2015 lúc 14:14

\(\frac{\left(-\frac{1}{7}\right)^n}{\left(-\frac{1}{7}\right)^{n-2}}=\left(-\frac{1}{7}\right)^n:\left(-\frac{1}{7}\right)^{n-2}=\left(-\frac{1}{7}\right)^{n-\left(n-2\right)}=\left(-\frac{1}{7}\right)^{n-n+2}=\left(-\frac{1}{7}\right)^2=\frac{1}{49}\)

Nguyễn Thị Đoan Trang
Xem chi tiết
Thùyy Linhh
Xem chi tiết
Steolla
31 tháng 8 2017 lúc 12:25

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Nguyễn Đình Hoàng
5 tháng 10 2021 lúc 10:10

hỏi dễ hơn đi

Khách vãng lai đã xóa
Nguyễn Đình Hoàng
5 tháng 10 2021 lúc 10:15

a)x^4+x^3

Khách vãng lai đã xóa
王一博
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
5 tháng 4 2020 lúc 16:23

Đặt A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)

Ta có : A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)

                 \(\frac{6}{4}.\frac{12}{10}.\frac{20}{18}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)

                = \(\frac{3.2}{4}.\frac{3.4}{2.5}.\frac{4.5}{3.6}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)

                = \(\frac{3.2.3.4.4.5....n}{2.3.4.5.6.....\left(n+2\right)}\)

                 = \(\frac{3.\left(n+1\right)}{n+2}\)

Vậy A = \(\frac{3.\left(n+1\right)}{n+2}\)

Khách vãng lai đã xóa
Nguyễn Thị Thanh	Dung
Xem chi tiết
Chi Khánh
Xem chi tiết
Đoàn Đức Hà
8 tháng 8 2021 lúc 18:02

\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Ta có đpcm. 

Khách vãng lai đã xóa
Nguyễn Duy Khánh
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2018 lúc 15:33

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

Thanh Tùng DZ
1 tháng 6 2018 lúc 15:36

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

Thanh Tùng DZ
1 tháng 6 2018 lúc 15:38

3.

Nhận xét ; \(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Do đó : \(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(n-1\right)n\left(n+2\right)}{n\left(n+1\right)}\)

Rút gọn được : B = \(\frac{1}{n}.\frac{n+2}{3}>\frac{1}{3}\)

no name
Xem chi tiết
Trần Thị Kim Ngân
22 tháng 11 2016 lúc 18:50

a) \(\frac{\left(n+1\right)!}{n!\left(n+2\right)}=\frac{n!\left(n+1\right)}{n!\left(n+2\right)}=\frac{n+1}{n+2}\)

b)\(\frac{n!}{\left(n+1\right)!-n!}=\frac{n!}{n!\left(n+1\right)-n!}=\frac{n!}{n!\left(n+1-1\right)}=\frac{1}{n}\)

c)\(\frac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}=\frac{n!\left(n+1\right)-n!\left(n+1\right)\left(n+2\right)}{n!\left(n+1\right)+n!\left(n+1\right)\left(n+2\right)}=\frac{n!\left(n+1\right)\left(1-n-2\right)}{n!\left(n+1\right)\left(1+n+2\right)}=\frac{-n-1}{n+3}\)

( Kí hiệu n!=1.2.3.4...n)

no name
22 tháng 11 2016 lúc 18:57

cảm ơn bạn nhiều nhiều nhiều lắm

Nguyễn Ngân	Hà
Xem chi tiết
Bách 9A
29 tháng 5 2021 lúc 8:30

a, 1/2.2/3.3/4...n-1/n=1/n

b,(-1/2):..:(-49/50)=50/4=25/2

Khách vãng lai đã xóa