tìm GTLN : B = \(\sqrt{3x-5}+\sqrt{9-3x}\)
Tìm GTLN: b = \(\sqrt{3x-5}+\sqrt{9-3x}\)
\(\sqrt{3x-5}+\sqrt{9-3x}\le\frac{3x-5+9-3x}{2}=2\)
Tiến làm sai rồi nhé
\(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Và kết quả là ........................................................................................................................................................................................................................................................ tự bạn biết đi, dễ mà
Tìm GTLN của:
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(A\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(A_{max}=2\) khi \(3x-5=7-3x\Leftrightarrow x=2\)
Tìm GTLN của SQRT ( 3X - 9) + sqrt ( 7 - x )
+ Áp dụng BĐT Cô - si :
\(\sqrt{3x-9}=\frac{3.\sqrt{3x-9}}{3}=\frac{\frac{\sqrt{9.\left(3x-9\right)}}{2}}{3}=\frac{x}{2}\)
\(\sqrt{7-x}=\sqrt{1.\left(7-x\right)}\le\frac{1+7-x}{2}=\frac{8-x}{2}\)
Cộng theo vế ta được :
\(\sqrt{3x-9}+\sqrt{7-x}\le\frac{x+8-x}{2}=4\)
Dấu " = " xảy ra \(\Leftrightarrow x=6\)
Chúc bạn học tốt !!!
Tìm GTLN của \(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
\(=2+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
\(\le2+\left(3x-5\right)+\left(7-3x\right)\)(Bđt Cô-si)
\(=2+2=4\)
\(\Rightarrow A^2\le4\Rightarrow A\le2\)
Dấu = khi \(\sqrt{3x-5}=\sqrt{7-3x}\Leftrightarrow x=2\)
Vậy....
tìm gtnn \(\sqrt{x^2+x+1}+\sqrt{x^2+x+1}\)
tìm gtln \(\sqrt{3x-5}+\sqrt{7-3x}\)
\(A=3x-2\sqrt{x}+5\)tìm gtln
A không có GTLN bạn nhé. A có GTNN thôi.
Cho: \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tìm xϵZ để PϵZ.
c, Tìm GTLN của P.
a) \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{3x+3\sqrt{x}-9+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) \(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+2}{\sqrt{x}+2}=3+\dfrac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow2⋮\sqrt{x}+2\Rightarrow\sqrt{x}+2=2\left(\sqrt{x}+2\ge2\right)\)
\(\Rightarrow x=0\)
c) Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\Rightarrow3+\dfrac{2}{\sqrt{x}+2}\le4\)
\(\Rightarrow P_{max}=4\) khi \(x=0\)
Với x>4, x≠9, tìm GTLN của \(\dfrac{3x+3}{2-\sqrt{x}}\)
Tìm điều kiện xác định của các biểu thức
a. \(\sqrt{3x-6}\)
b. \(\sqrt{-3x+9}\)
c. \(\sqrt{\dfrac{4}{2x-1}}\)
d. \(\sqrt{\dfrac{-5}{-3x+2}}\)
e. \(\sqrt{\dfrac{5x-3}{-4}}\)
a)ĐK:`3x-6>=0`
`<=>3x>=6<=>x>=2`
b)ĐK:`-3x+9>=0`
`<=>-3x>=-9`
`<=>x<=3`
c)ĐK:`(-5)/(-3x+2)>=0(x ne -2/3)`
Vì `-5<0`
`<=>-3x+2<0`
`<=>-3x<-2`
`<=>x>2/3`
e)ĐK:`(5x-3)/(-4)>=0`
MÀ `-4<0`
`<=>5x-3<=0`
`<=>5x<=3`
`<=>x<=3/5`