Tính tổng M=1/(1+1^2+1^4)+2/(1+2^2+2^4)+3/(1+3^2+3^4)+.....+2013/(1+2013^2+2014^2)
Tính tổng \(M=\frac{1}{1+1^2+1^4}+\frac{2}{1+2^2+2^4}+\frac{3}{1+3^2+3^4}+...+\frac{2013}{1+2013^2+2014^2}\)
bn ơi mik nhớ, bn ơi mik rất nhớ cái tick
Thực hiện tính :
a) A = 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+..+2013)
b) B = 1-3/7.3+2-4/2.4+3-5/3.5+4-6/4.6+....+2011-2013/2011.2013+2012-2014/2012.2014-2013+2014/2013.2014
1) 1/2 + 1/3 + 1/4 + ... + 1/2013 + 1/2014
2) 2014 + 2013/2 + 2012/3 + 2011/4 + ... + 2/2013 + 1/2014
tính
A=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+4+...+2013)
B=(1-3)/(1.3)+(2-4)/(2.4)+(3-5)/(3.5)+(4-6)/(4.6)+...+(2011-2013)/(2011.2013)+(2012-2014)/(2012.2014)-(2013+2014)/(2013.2014)
thứ 7 mình nộp ai làm nhanh mình tích cho
nhớ giải chi tiết
1*2*3*...*2015-1*2*3*4*...*2014-1*2*3*...*2013*2014^2 tính nhanh
\(1.2.3....2015-1.2.3....2014-1.2.3....2013.2014^2\)
\(=1.2.3...\left(2014+1\right)-1.2.3...\left(2014+1\right)\)
\(=0\)
bạn làm thế là sai rồi
có 3 con 2014 cơ mà
Bài 1 : Tính tổng
a) 1 *2 *3 + 2 * 3 *4 + 3 * 4 * 5 + ... + 2013 * 2014 * 2015 + 2014 * 2015 * 2016
b) 1 * + 3 * 4 + 5 * 6 + ... + 99 * 100
Bài 2 : CMR : 1^3 + 2^3 + 3^3 + ... + n^3 = ( 1 + 2 + 3 + ... + n )^2
Tính nhanh (1/1):2+(1/2):3+1/3:4+...+(1/2012):2013+(1/2013):2014
Ta có:
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
Ta thấy :
\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(...\)
\(\frac{1}{2013.2014}=\frac{1}{2013}-\frac{1}{2014}\)
Ta có:
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}\)
\(=\frac{2013}{2014}\)
mãi k có ai trả lời ai piết thỳ làm hộ nha đang cần gấp
Tính
A=3^2016 - 3^2015 + 3^2014 - 3^2013 + ......+ 3^2 - 3 + 1
B= 4^2016 - 4^2015 + 4^2014 - 4^2013 + ......+4^2 - 4 + 1
=>3A= 3^2017-3^2016+3^2015-...-3^2+3
=>3A+A=4A=3^2017+1=>A=\(\frac{3^{2017}+1}{4}\)
B tương tự nha
Tính các tổng sau:
a) A=1+(-2) + 3 +(-4) + ...+(- 2014) + 2015;
b) B= (-2) + 4 +(-6) + 8 ... +(-2014) + 2016;
c) 1+(-3) + 5 +(-7) + ... + 2013 +(-2015);
d) (-2015) + (-2014) + (-2013)+ ... + 2015 + 2016
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)
\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)
c) 1 + ( -3 ) +5 + ( -7 ) + ...........+ 2013 + ( -2015 )
[ 1 + (-3 ) ] + [ 5 + -7 ] + .......... + [ 2013 + ( - 2015 ) ]
có số cặp là : [ ( 2015 - 1 ) : 2 + 1 ] : 2 = 504 ( cặp )
= -2 + -2 + -2 +..........+ -2
= -2 x 504
= -1008