Chứng minh rằng với n ∈ N * thì 1 + 2 + 3 + . . . + n = n n + 1 2
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
chứng minh rằng với n thuộc N* thì :1*1!+2*2!+3*3!+...+n*n!=(n+1)! - 1
chứng minh rằng với mọi n E N thì ƯCLN (n+3;n+2)=1
Gọi ƯCLN(n+3;n+2) là d
ta có: n+3 chia hết cho d
n+2 chia hết cho d
=> n + 3 - n - 2 chia hết cho d
=> 1 chia hết cho d
=> ƯCLN(n+3;n+2) = 1
Chứng minh rằng: Với mọi n thuộc N* thì
1*2+2*3+3*4+...+n(n+1)= n(n+1)(n+2) chia cho 3
1. Chứng minh rằng N Không chia hết cho 7 thì n^ 2 cộng 1 hoặc n^3 - 1 chia hết cho 7
2. Chứng minh rằng với mọi số tự nhiên N lẻ thì
(n >1) 13 lần số chia hết cho 8
3. Chứng minh rằng 2^4.n -1 chia hết cho 15. Giải nhanh giúp mình với để cho minh nộ bài nhé các bạn
1.Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2
2.Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+5) chia hết cho 2
3. Gọi A = n2 + n + 1 . Chứng minh rằng :
a) A không chia hết cho 2
b) A không chia hết cho 5
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
chứng minh rằng với mọi n thì 1/2^2+1/3^2+1/4^2+1/5^2+...+1/n^2
chứng minh rằng với mọi số nguyên dương thì S=(n+1)(n+2)(n+3)..........(n+n) chia hết cho 2^n