Cho x - 2y = 2. Tìm GTNN của Q = \(x^2+2y^2-x+3y\)
B1: cho x-2y=2. tìm GTNN của Q= \(x^2+2y^2-x+3y\)
B2: a) tìm GTLN của P=\(x^2+y^2+xy+x+y\)
b) tìm GTLN của Q=\(-5x^2-2xy-2y^2+14x+10y-1\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
Tìm GTNN của \(Q=x^2+2y^2-x+3y\) VỚI x - 2y =2
Cho x-2y=5. Tìm GTNN của
M=\(x^2-3y^2-4y-1\)
\(x-2y=5\Rightarrow x=5+2y\)
\(\Rightarrow M=x^2-3y^2-4y-1=\left(5+2y\right)^2-3y^2-4y-1\)
\(=\left(4y^2+20y+25\right)-3y^2-4y-1\)
\(=y^2+16y+24\)
\(=\left(y^2+16y+64\right)-40\)
\(=\left(y+8\right)^2-40\ge-40\)
Dấu "=" xảy ra \(\Leftrightarrow\left(y+8\right)^2=0\Leftrightarrow y=-8\Rightarrow x=2y+5=-16+5=-11\)
Vậy GTNN của M là -40\(\Leftrightarrow x=-11;y=-8\)
Cho x+y=3. Tìm GTNN của A=x^2+3y^2+2y+5
\(x+y=3\Leftrightarrow x=3-y\\ \Leftrightarrow A=\left(3-y\right)^2+3y^2+2y+5\\ A=y^2-6y+9+3y^2+2y+5\\ A=\left(4y^2-4y+1\right)+13=\left(2y-1\right)^2+13\ge13\\ A_{min}=13\Leftrightarrow y=\dfrac{1}{2}\Leftrightarrow x=3-\dfrac{1}{2}=\dfrac{5}{2}\)
Tìm GTNN của biểu thức : \(Q=x^2+2y^2-x+3y\) với x-2y=2
1,Cho x,y là số thực dương , x lớn hơn hoặc bằng 3y. Tìm GTNN của B=\(\frac{x^3-y}{x^2y}\)
2, Cho x,y là số thực dương, x lớn hơn hoặc bằng 2y.Tìm GTNN của B=\(\frac{x^3-2y^2+2x^2y}{x^2y}\)
Cho x, y là các số thực dương thay đổi sao cho x+y=2
Tìm GTNN của \(T=\frac{x^2+3y^2}{2xy^2-x^2y^3}\)
Tìm GTNN của các biểu thức :
a, P=2x^2+y^2-2xy-2x+2015
b, Q= x^2=2y^2-x+3y với x-2y=2
c, B=3x^2+y^2-8x+2xy+16
a) ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014
Đăngt thức xay ra khi x=y=1
1) Cho \(x+2y=1\). Tìm GTNN của A = \(x^2+2y^2\)
2) Cho \(4x-3y=7\). Tìm GTNN của B = \(2x^2+5y^2\)
3) Cho x + y = 1. Tìm GTNN của C = \(x^4+y^4\)
1)
ta có: x+2y=1 => x=1-2y
thay vào bt, ta có:
\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1\\ A=6\left(x-\dfrac{4}{2.6}\right)^2+\dfrac{4.6.1-\left(-4\right)^2}{4a}\ge\dfrac{4.6.1-\left(-4\right)^2}{46}=\dfrac{1}{3}\)
A đạt min khi x-1/3=0 => x=1/3
vậy MIN A=1/3 tại x=1/3
áp dụng bđt cô si cho 4 số ta có
\(x^4+\dfrac{1}{16}+\dfrac{1}{16}+\dfrac{1}{16}\ge4\sqrt[4]{x^4.\dfrac{1}{16}.\dfrac{1}{16}.\dfrac{1}{16}}\)
⇔ \(x^4+\dfrac{3}{16}\ge x.\dfrac{1}{2}\)
cmtt ta có
\(y^4+\dfrac{3}{16}\ge y\dfrac{1}{2}\)
cộng các vế của bđt trên ta có
\(x^4+y^4+\dfrac{3}{8}\ge\dfrac{1}{2}\left(x+y\right)\)
⇔ \(C+\dfrac{3}{8}\ge\dfrac{1}{2}\)
⇔ \(C\ge\dfrac{1}{8}\)
minC=\(\dfrac{1}{8}\) khi x=y=\(\dfrac{1}{2}\)