Các số sau đây có phải là số chính phương ko:
a) A=3+32+33+...+320
b) B=11+112+113
Cho A=3+32+33+......+32004
a)Chứng minh A chia hết cho 130
b)A có phải là số chính phương ko? Vì sao?
Cho biểu thức A =1+19+93^2015+1993^2016 . Hỏi A có phải là số chính phương ko???
(Hình như A là số chính phương phải không các bạn , giải hộ mk vs)
Các số sau có phải số chính phương hay không?
a)A= 3+32+33+...+320
b)B=11+112+113
Bài 1:Tổng sau có phải là số chính phương ko?
a) \(10^{10}+8\)
b) \(10^{10}+5\)
Bài 2: Chứng tỏ rằng các số sau ko phải là số chính phương:
a) abcd b)abcabc c)ababab (những câu trên là số)
Bài 3: Tìm số nguyên ab sao cho ab+ba là số chính phương?
Bài 4: Viết dãy số tự nhiên từ 1 đến 101 đc số A=123456...101
a) A có là hợp số ko?
b) A có là số chính phương ko?
c) A có thể có 35 ước ko?
Giúp mình với nha ! ^_^
Mình đang rất cần nêu ai làm nhanh cả cách làm mà mình thấy đúng thì mình sẽ tích cho
= 10^10 + 8
A=10^10+8
= 10.....0 +8
= 100.....08
vì A có tận cùng là 8
Vậy 10^10 + 8 không phải là số chính phươngt
ko có câu trả lời thì thôi đừng có nói lung tung mất thời gian mất cộng xem
Các số sau có phải số chính phương ko?
A=3+32+33+...+320
A =3( 1+3+32 +...+319) => A không là số chính phương
Vì A chia hết cho 3 nhưng không chia hết cho 9; ( 1+3+32 +.....319) chia cho 3 dư 1
Chứng minh các số sau là số chính phương :
a) A = 111...1888...89 (có n số 1 , n-1 số 8)
b) B=111...1222...25(có n số 1 , n+1 số 2 )
Viết liên tiếp từ 1 tới 101 tạo thành số A= 123...101.
a,A có là́ hợp số ko
b,A có phải là số chính phương
Ai giải giùm mình tích nha thanks
a) Tính tổng các chữ số của A ta thấy:
1+2+3 chia hết cho 3
4+5+6 chia hết cho 3
...
97+98+99 chia hết cho 3
100 + 101 = 201 chia hết cho 3
A có tổng các chữ số chia hết cho 3 nên A chia hết cho 3 => A là hợp số.
b) Vẫn tính tổng của A, nhưng theo cách:
1+2+3+...+9 chia hết cho 9
11+12+13+...+19 chia hết cho 9
...
91+92+93+...+99 chia hết cho 9
10+20+30+...+90 chia hết cho 9
100+101 không chia hết cho 9
Nên A không chia hết cho 9.
A chia hết cho 3 nên A viết được dưới dạng: A = 3*B. Và B không chia hết cho 3 vì A không chia hết cho 9.
Nên A không phải là 1 số chính phương.
+ Chữ số 0 xuất hiện ở hàng đơn vị của các số: 10; 20; 30; ....; 100 gồm: (100 - 10) : 10 + 1 = 10 ( lần)
Chữ số 0 xuất hiện ở hàng chục của các số: 100 và 101 gồm 2 lần
=> có 10 + 2 = 12 ( chữ số 0) xuất hiện ở A
+ Chữ số 1 xuất hiện ở hàng đơn vị của các số: 1; 11; 21; ...; 101 gồm: (101 - 1) : 10 + 1 = 11 ( lần)
Chữ số 1 xuất hiện ở hàng chục của các số: 10; 11; 12; ...; 19 gồm: (19 - 10) : 1 + 1 = 10 ( lần)
Chữ số 1 xuất hiện ở hàng trăm của các số: 100 và 101 gồm 2 lần
=> có 11 + 10 + 2 = 23 ( chữ số 1) xuất hiện ở A
+ Chữ số 2 xuất hiện ở hàng đơn vị của các số: 2; 12; 22; ...; 92 gồm: (92 - 2) : 10 + 1 = 10 ( lần)
Chữ số 2 xuất hiện ở hàng chục của các số: 20; 21; 22; ...; 29 gồm: (29 - 20) : 1 + 1 = 10 ( lần)
=> có 10 + 10 = 20 ( chữ số 2) xuất hiện ở A
...
+ Chữ số 9 xuất hiện ở hàng đơn vị của các số: 9; 19; 29; ...; 99 gồm: (99 - 9) : 10 + 1 = 10 ( lần)
Chữ số 9 xuất hiện ở hàng chục của các số: 90; 91; 92; ...; 99 gồm: (99 - 90) : 1 + 1 = 10 ( lần)
=> có 10 + 10 = 20 ( chữ số 9) xuất hiện ở A
=> Tổng các chữ số của A là: 12×0 + 23×1 + 20×(2+3+...+9) = 903
a) Vì 903 chia hết cho 3
=> A chia hết cho 3
=> A là hợp số
b) Vì 903 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9
=> A không phải số chính phương
a) Tính tổng các chữ số của A ta thấy:
1+2+3 chia hết cho 3
4+5+6 chia hết cho 3
...
97+98+99 chia hết cho 3
100 + 101 = 201 chia hết cho 3
A có tổng các chữ số chia hết cho 3 nên A chia hết cho 3 => A là hợp số.
b) Vẫn tính tổng của A, nhưng theo cách:
1+2+3+...+9 chia hết cho 9
11+12+13+...+19 chia hết cho 9
...
91+92+93+...+99 chia hết cho 9
10+20+30+...+90 chia hết cho 9
100+101 không chia hết cho 9
Nên A không chia hết cho 9.
A chia hết cho 3 nên A viết được dưới dạng: A = 3*B. Và B không chia hết cho 3 vì A không chia hết cho 9.
Nên A không phải là 1 số chính phương.
Cho S= 1+3+3^2+3^3+...+3^2012.
a, S có chia hết cho 4 ko? Vì sao?
b,2.S có phải là số chính phương ko? Vì sao?
S=1+3+\(3^2\)+\(3^3\)+.....+\(3^{2012}\)
S=(1+3)+(\(3^2\)+\(3^3\))+.......+(\(3^{2011}\)+\(3^{2012}\))
S=4+\(3^2\).(1+3)+.......+\(3^{2011}\)(1+3)
S=4+4.\(3^2\)+....+4.\(3^{2011}\)
S=4.(1+\(3^2\)+.....+\(3^{2011}\))\(⋮\)4
Vậy S chia hết cho 4
\(S=1+3+3^2+3^3+...+3^{2012}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2010}+3^{2011}\right)+3^{2012}\)
\(S=4+3^2\left(1+3\right)+...+3^{2010}\left(1+3\right)+3^{4\times503}\)
\(S=4+3^2\times4+...+3^{2010}\times4+\left(.....1\right)\) (các chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 1)
mà \(\left(.....1\right)⋮̸4\)
\(\Rightarrow S⋮̸4\)
Chúc bạn học tốt
\(S=1+3+3^2+3^3+...+3^{2012}\)
\(3S=3+3^2+3^3+3^4+...+3^{2013}\)
\(3S-S=\left(3+3^2+3^3+3^4+...+3^{2013}\right)-\left(1+3+3^2+3^3+...+3^{2012}\right)\)
\(2S=3^{2013}-1\)
\(2S=3^{4\times503}\times3-1\)
\(2S=\left(.....1\right)\times3-1\)
\(2S=\left(.....3\right)-1\)
\(2S=\left(.....2\right)\)
Vì 2S có chữ số tận cùng là 2 nên không là số chính phương
Chúc bạn học tốt
Các số sau có phải là số chính phương ko?
a)1.2.3.4+1 b) 7.6.5.4+1 c)31.32.33.34+1 d) n.(n+1).(n+2).(n+3)+1
d) 1+3+5+7+..........+2017
A)1.2.3.4+1=25=>1.2.3.4+1 LÀ SỐ CHÍNH PHƯƠNG
B)7.6.5.4+1=841=>7.6.5.4+1 KO PHẢI LÀ SỐ CHÍNH PHƯƠNG
C)31*32*33*34+1=1113025=>31*32*33*34+1 KO PHẢI LÀ SỐ CHINH PHUONG
D,D TUONG TU