tìm x,y biết:
| x - 5 | +| x + y |=0
a) A=x(x^3+y)-x^2(x^2-y)-x^2(y-1) tại x=-10 và y=5
b) Tìm x biết 5x^3-3x^2+10x-6=0
c) Tìm x biết x^2+y^2-2x+4y+5=0
Tìm x,y thuộc Z biết
a) x.y=5
b) (x+1). y=5
c) x.y+y-5=0
d) (x+y) . (y+1)=0
e) x.(y+1)+y.(y+1)=3
f)x.y+x+y^2+y-7=0
g) (x+2).(y-3)=5
cứu tui !!!!
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
a) Tìm hai số x và y biết x/3=y/4 và x+y=28
b)Tìm hai số x và y biết x:2=y:(-5) và x-y=-7
c)Tìm x,y,z biết (x-1/5)^2004+(y+0,4)^100+(z-3)^678=0
Tìm x , y biết :
(y+2)(y-2) >0
x(x-5)<0
y^2-4>0 nên y^2>4 khi đó y<-2 và y>2 sẻ thỏa mãn đề bài
để x(x-5)<0 thì x và x-5 phải trái dấu . mà x-5<x nên x>0 và x-5<0 khi đó 0<x<5 sé thỏa mãn đề bài
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Tìm x, y biết:
a)-x/4=-9/x
b)x/4=18/x+1
c)x/6=7/y (x<y<0)
d)-2/x=y/5 (x<0<y)
e)5/x=-y/7 (y>0)
a,\(\frac{-\chi}{4}=\frac{-9}{\chi}\Rightarrow-\chi.\chi=4.\left(-9\right)\)
\(\Rightarrow-2\chi=-36\Rightarrow\chi=-36:\left(-2\right)\)
\(\Rightarrow\chi=18\)
Tìm các số nguyên x,y biết:
a,|x-3|+|y+3|=0
b,|x+5|+|y-4|<hoặc= 0
c,|7-x|+|y-5|=0
d,(x-2y)^2(y-6)^2=0
a) |x - 3| + |y + 3| = 0
< = > |x - 3| = |y + 3| = 0
x = 3 ; y = -3
tìm x, y biết x+y= x: y = 3.(x-y) với y khác 0
tìm các giá trị của x sao cho P=\(\frac{x+2}{5-x}\) >0
3(x+y)/3=x/y=3(x-y)/1=4x/(y+4)=x/y=>x=0,y=0
hoặc y+4=4y=>y=4/3=>x=y^2/(y-1)=?
b) nghiêm ử=-2; ủa mẫu là 5=>
-2<x<5
Tìm số hữu tỉ x, y, z( y khác 0) biết rằng:
x.(x+y+z)= -5; y.(x=y+z)= 9; z.(x+y+z)= 5
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\\y\left(x+y+z\right)=9\\z\left(x+y+z\right)=5\end{cases}}\)
Dễ thấy \(x,y,z\)và \(x+y+z\)đều khác \(0\).
Suy ra \(\hept{\begin{cases}\frac{x}{z}=-1\\\frac{y}{z}=\frac{9}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-z\\y=\frac{9}{5}z\end{cases}}\)
Thế vào phương trình \(z\left(x+y+z\right)=5\)ta được:
\(z\left(-z+\frac{9}{5}z+z\right)=5\Leftrightarrow\frac{9}{5}z^2=5\Leftrightarrow z=\pm\frac{5}{3}\).
Suy ra các nghiệm \(\left(-\frac{5}{3},3,\frac{5}{3}\right),\left(\frac{5}{3},-3,-\frac{5}{3}\right)\).
Thử lại đều thỏa mãn.