Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tô Lê Minh Thiện
Xem chi tiết
Đào Quang Thái
Xem chi tiết
Mai Thanh Thảo
Xem chi tiết

có lời giải ko bạn

shitbo
15 tháng 1 2019 lúc 17:24

Đặt S=1+2+2^2+..........+2^2019

Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có  3 số hạng và thừa 1 số hạng như sau 

S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)

S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)

S=1+2.7+2^4.7+.....+2^2017.7

S=1+7(2+2^4+2^2017) chia 7 dư 1

Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1

Bùi Vương TP (Hacker Nin...
16 tháng 1 2019 lúc 19:46

Đặt S=1+2+2^2+..........+2^2019

Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có  3 số hạng và thừa 1 số hạng như sau 

S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)

S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)

S=1+2.7+2^4.7+.....+2^2017.7

S=1+7(2+2^4+2^2017) chia 7 dư 1

Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1

Nguyễn thị Minh Châu
Xem chi tiết
pyonguccii
Xem chi tiết
pyonguccii
Xem chi tiết
Phương Anh Cute
Xem chi tiết
trần quỳnh ny
Xem chi tiết
nguyễn hà phương
Xem chi tiết