Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn B
Xem chi tiết
Nguyễn Quế Dân
1 tháng 4 2016 lúc 12:46

anh Nguyễn Văn B có thể trả lời câu hoi này không

Nguyễn Quế Dân
Xem chi tiết
Nguyễn Quế Dân
1 tháng 4 2016 lúc 12:47

ai trả lời đúng mình sẽ L I K E

Nguyễn Hồ Đan Linh
Xem chi tiết
trần minh quân
Xem chi tiết
Hồ Thu Giang
21 tháng 10 2015 lúc 23:25

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

Hồ Thu Giang
21 tháng 10 2015 lúc 23:33

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

Phiêu Lưu Mèo
Xem chi tiết
lê công minh hieu
13 tháng 7 2016 lúc 16:25

a/Gọi 3 số tn liên tiếp là a , a+1 , a+2

Ta có A=a.(a+1).(a+2)

Chứng minh A chia hết cho 2: Chỉ có hai trường hợp

+Nếu a=2k =>A chia hết cho 2

+Nếu a=2k+1 =>a+1=2k+1+1= 2(k+1) =>A chia hết cho 2

Chứng minh A chia hêt cho 3: Chỉ có ba trường hợp

+Nếu a=3k =>A chia hết cho 3

+Nếu a=3k+1 =>a+2=3k+1+2=3k+3=3(k+1) =>A chia hết cho 3

+Nếu a=3k+2 =>a+1=3k+2+1=3k+3=3(k+1) =>A chia hết cho 3

vì A chia hết cho cả 2 và 3

mà ƯCLN(2,3)=1

vậy A chia hết cho 6

bài b bạn làm tương tự

Đinh Thùy Linh
13 tháng 7 2016 lúc 14:53

1./ Gọi tích của 3 số tự nhiên liên tiếp là: A = n*(n+1)(n-1)

Trong 3 số tự nhiên liên tiếp thì:

Có ít nhất 1 số chẵn: => A chia hết cho 2Có 1 số chia hết cho 3 => A chia hết cho 3.

A chia hết cho cả 2 và 3 mà U(2;3) = 1 => A chia hết cho 2x3 = 6. đpcm

2./ Tương tự, gọi tích B = a*(a + 1)*(2a + 1)

a và a+1 là 2 số tự nhiên liên tiếp nên sẽ có 1 số chẵn => B chia hết cho 2.Nếu a hoặc a+1 chia hết cho 3 thì B chia hết cho 3.Bếu a và a+1 không chia hết cho 3 thì từ kết quả câu 1./ số tự nhiên tiếp theo: a+2 sẽ chia hết cho 3 hay 2a + 4 chia hết cho 3 hay 2a + 1 + 3 chia hết cho 3 => 2a + 1 chia hết cho 3 => B chia hết cho 3.

Như vậy, bất kỳ số tự nhiên a nào thì B cũng chia hết cho cả 2 và 3 => b chia hết cho 6.

Phiêu Lưu Mèo
13 tháng 7 2016 lúc 15:08

ờ ai có thể giải dễ hiểu hơn ko

chứ bạn này giải mình ko hiểu

giúp mình nha

Trà My
Xem chi tiết
Huy Hoàng
Xem chi tiết
Đừng hỏi tên tớ vì tớ cũ...
12 tháng 11 2016 lúc 20:53

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

Lê Thị Thu Hằng
23 tháng 11 2016 lúc 10:18

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.tích của 3 số nguyên liên tiếp chia hết cho 3.tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

(a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

pham ngoc yen nhi
9 tháng 10 2019 lúc 22:43

sao dài yữ vậy trời???????????????????????????????????????

Nguyen Duong
Xem chi tiết
tran vinh
12 tháng 7 2021 lúc 19:58

bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên

gọi 2 số chẵn liên tiếp đó là: 2k,2k+2

2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8

gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4

2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)

k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)

từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1

câu c, tương tự vậy

Khách vãng lai đã xóa
Phùng Đoàn Bảo Vy (minh...
13 tháng 10 2021 lúc 20:44

ASDWE RHTYJNHWSAVFGB

Khách vãng lai đã xóa
╰‿╯ҜILLΞЯ✿БФУ亗
7 tháng 12 2024 lúc 8:23

i

.
Xem chi tiết
hoa nguyendinh
Xem chi tiết
vo thi hanh van
12 tháng 10 2014 lúc 0:45

\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)

ta có:

(a+1).a.(a-1) chia hết cho 6

(a+1).(a+3).a+2) chia hết cho 6.

(3 số tự nhiên liên kề thì chia hết cho 6);

suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6

Phạm Duy Tuấn
26 tháng 12 2014 lúc 13:34

a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6

Câu b) tương tự.