BÀI 1 : TÌM 2 SỐ NGUYÊN MÀ HIỆU CHÚNG BẰNG 3 LẦN TỔNG CỦA CHÚNG
Tìm 2 số nguyên mà hiệu của chúng bằng 3 lần tổng của chúng
Gọi hai số đó là a và b,ta có:
a−b=3a+3b
=>2a+4b=0
=>a=−2b
Vậy với mọi số a=−2b thì thõa
Gọi 2 số nguyên đó lần lượt là a và b.
Theo đề, hiệu của chúng bằng 3 lần tổng của chúng
=> a-b= 3*(a+b)
=>a-b= 3a+3b
=> a-3a=3b+b
=> -2a=4b
=>a=-2b
Vậy 2 số nguyên cần tìm phải thỏa mãn a=-2b
Tìm 2 số nguyên mà hiệu của chúng bằng 3 lần tổng của chúng
Gọi hai số đó là aa và bb,ta có:
a−b=3a+3ba−b=3a+3b
⟺2a+4b=0⟺2a+4b=0
⟺a=−2b⟺a=−2b
Vậy với mọi số a=−2ba=−2b thì thõa
tìm 2 số nguyên mà hiệu của chúng bằng 3 lần tổng của chúng ^^
gọi 2 số cần tìm là a; b với a;b thuộc Z. giả sử a>b
theo đề bài ta có : a - b = 3(a+b) <=> 2a +4b = 0 <=> a + 2b = 0 <=> a = -2b.
Bài 8: Tìm hai số nguyên mà hiệu của chúng bằng ba lần tổng của chúng.
Gọi 2 số đó là a, và b
Ta có: a-b= 3(a+b)
=> a-b=3a+3b
đến đây tịt
những số a; b thỏa mãn công thức tổng a = -2b ( vô số các cặp a; b thỏa mãn)
ví dụ a = 6, b = -3
a = 8 ; b = -4
......
.....
Bài 8: Tìm hai số nguyên mà hiệu của chúng bằng 3 lần tổng của chúng.
Bài 9: Tìm hai số nguyên a và b, biết tổng của chúng bằng ba lần hiệu a-b còn thương a:b và hiệu a-b là hai số đối nhau
*Nhanh+đủ = 3 đến 5 tick tùy theo sự hài lòng với câu trả lời.
Tìm hai số nguyên mà hiệu của chúng bằng ba lần tổng của chúng
Gọi hai số nguyên cần tìm là a và b. Ta có:
3.(a + b) = a - b
⇔3a + 3b = a - b (Phân phối giữa phép nhân và phép cộng)
⇔ 3a – a = -3b – b (Quy tắc chuyển vế )
⇔ 2a = -4b
⇔ a = -2b
Có vô số cặp số nguyên thỏa mãn đề bài là a;b với b ∈ Z và a = -2b.
Ví dụ :
b = 1 thì a = -2
b = -1 thì a = 2
Kết luận : a = -2b với b ∈ Z thỏa mãn yêu cầu đề bài.
Gọi 2 số nguyên cần tìm là a và b, ta có:
3.(a + b) = a - b.
<=> 3a + 3b = a - b (Phân phối giữa phép nhân và phép cộng)
<=> 3a - a = -3b - b (Quy tắc chuyển vế)
<=> 2a = -4b
<=> a = -2b
Có vô số cặp số thỏa mãn yêu cầu của đề bài là a;b vs b thuộc Z và a = -2b
VD:
b = -1 thì a= 2
b = 1 thì a = -2
=> a = -2b vs b thuộc Z thỏa mãn yêu cầu của đề bài.
Gọi hai số nguyên cần tìm là a và b. Ta có:
3. (a + b) = a - b
3a + 3b = a - b
3a - a = -3b - b
2a = -4b
a = -2b
Có vô số cặp số nguyên thoả mãn đề bài là a;b với b \(\in\)Z và a = -2b
VD: b = 1 thì a = -2
b = -1 thì a = 2
Kết luận: a = -2b với \(\in\)Z thoả mãn đề bài
Tìm hai số nguyên mà hiệu của chúng bằng ba lần tổng của chúng.
Gọi hai số nguyên cần tìm là a và b. Ta có:
3.(a + b) = a - b
\(\Leftrightarrow\)3a + 3b = a - b (Phân phối giữa phép nhân và phép cộng)
\(\Leftrightarrow\) 3a – a = -3b – b (Quy tắc chuyển vế )
\(\Leftrightarrow\) 2a = -4b
\(\Leftrightarrow\) a = -2b
Có vô số cặp số nguyên thỏa mãn đề bài là a;b với b \(\in\) Z và a = -2b.
Ví dụ :
b = 1 thì a = -2
b = -1 thì a = 2
Kết luận : a = -2b với b \(\in\) Z thỏa mãn yêu cầu đề bài.
Tìm tỉ số 2 số nguyên mà hiệu của chúng gấp 3 lần tổng của chúng
a ) Tìm 2 số nguyên mà tích của chúng bằng tổng của chúng
b ) Tìm 2 số nguyên mà tích của chúng bằng hiệu của chúng
Giúp tớ với, 1 phần cũng được.
b, Gọi 2 số cần tìm là x và y
Ta có : xy = x - y
<=> xy - x + y = 0 <=> x.(y-1) + y-1 = 0 - 1 = -1
<=> (y-1).(x+1) = -1 = (-1).1 = 1.(-1)
Có 2 trường hợp
- TH1 : y-1 = -1 và x+1 = 1 thì tìm được x = 0; y = 0
- TH2 : y-1 = 1 và x+1 = -1 tìm được x = -2; y = 2