Cho S=1/1.3+1/3.5+1/5.7+...+1/99.100. Khi đó 2S+1/101
Cho S = 1/1.3 + 1/3.5 +1/5.7 + ......+ 1/99.101. Khi đó 2S + 1/101 = ?
2S=2/1.3+2/3.5+....+2/99.101
2S=1-1/3+1/3-1/5+....+1/99-1/101
2S=1-1/101
2S+1/101=1-1/101+1/101=1
Nho tick nha
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(S=1-\frac{1}{101}=\frac{100}{101}\)
\(2S+\frac{1}{101}=\frac{100}{101}\)
\(S=2.\frac{100}{101}+\frac{1}{101}\)
\(\Rightarrow S=\frac{201}{101}\)
****
2S + \(\frac{1}{101}\)=\(\frac{201}{101}\)
Cho S=1/1.3+1/3.5+1/5.7+............+1/99.101
Khi đó 2S+1/101=...........
Trả lời :............
Cho \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.......+\frac{1}{99.101}\)
Khi đó \(2S+\frac{1}{101}=..............\)
Giúp mk nha
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2S=1-\frac{1}{101}\Rightarrow2S+\frac{1}{101}=1\)
Cho \(S\) = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
Khi đó \(2S+\frac{1}{101}=\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.........+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}\)
\(2S+\frac{1}{101}=1-\frac{1}{101}+\frac{1}{101}=1\)
2S+\(\frac{1}{100}\)=1
Cho minh vai li-ke cho tron 130 nha
Cho A=1/1.3 +1/3.5+1/5.7 +... +1/99.100
Khi đó 200A = ?
A=1-1/3+1/3-1/5+....+1/99-1/100
A=1-1/100=99/100
Cho S = 1/1.3+1/3.5+1/5.7+...+1/99.101 . Khi đó 2S+1/101=?
\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(2S=1-\frac{1}{101}=\frac{100}{101}\)
\(S=\frac{50}{101}\)
S=1/1.3+1/3.5+1/5.7+...+1/99.100
\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}\times\frac{100}{101}=\frac{50}{101}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}\)
\(S=\frac{99}{100}\)
\(S=\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{99\times101}\) chứ bạn
Rút gọn tổng S=1/1.3+1/3.5+1/5.7+1/7.9+...+1/99.100 ta được S là
=>2S=2/1.3+2/3.5+....+2/99.100
ơ bạn nhầm đề bài à
Cho A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+........+\frac{1}{99.100}\)
khi đó 200A bằng ....