Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ayakashi
Xem chi tiết
Thắng Nguyễn
4 tháng 7 2017 lúc 12:22

Tìm max $A=\frac{\sqrt{x-2001}}{x+2}+\frac{\sqrt{x-2002}}{x}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

Vương Hoàng Minh
Xem chi tiết
ʚĭɞ Thị Quyên ʚĭɞ
Xem chi tiết
nguyen kim chi
Xem chi tiết
Mr Lazy
18 tháng 7 2015 lúc 22:17

Áp dụng Côsi:

\(\frac{\sqrt{2003}\sqrt{x-2001}}{\left(x+2\right)\sqrt{2003}}+\frac{\sqrt{2002}\sqrt{x-2002}}{x\sqrt{2002}}\le\frac{2003+x-2001}{2\left(x+2\right)\sqrt{2003}}+\frac{2002+x-2002}{2x\sqrt{2002}}\)

\(\frac{x+2}{2\left(x+2\right)\sqrt{2003}}+\frac{x}{2x\sqrt{2002}}=\frac{1}{2\sqrt{2003}}+\frac{1}{2\sqrt{2002}}\)

Dấu "=" xảy ra khi \(2003=x-2001\text{ và }2002=x-2002\Leftrightarrow x=4004\)

Vậy GTLN của biểu thức là \(\frac{1}{2\sqrt{2003}}+\frac{1}{2\sqrt{2002}}\)

Nguyễn Thảo Nguyên
Xem chi tiết
Bimbim
11 tháng 8 2020 lúc 15:42

Kết quả là 25

Khách vãng lai đã xóa
nguyen kim chi
Xem chi tiết
Luyện Nguyễn Khắc
Xem chi tiết
Phan Văn Hiếu
4 tháng 9 2017 lúc 21:16

\(\frac{2002x^4+x^4\sqrt{x^2+2002}+x^2}{2001}=2002\)

\(\frac{x^2\left(x^2+2002\right)+x^4\sqrt{x^2+2002}}{2001}=2002\)

\(x^2\sqrt{x^2+2002}\left(\sqrt{x^2+2002}+x^2\right)=2002.2001\)

đặt x^2+2002=a

a-2002=x^2

pt \(\left(a-2002\right)\sqrt{a}\left(\sqrt{a}+a-2002\right)=2002.2001\)

Nguyễn Phúc Thiên
Xem chi tiết
Trần Đạt
Xem chi tiết
Neet
4 tháng 9 2017 lúc 0:06

\(Pt\Leftrightarrow2002x^4+x^4\sqrt{x^2+2002}+x^2-2002.2001=0\)

\(\Leftrightarrow x^4\left(\sqrt{x^2+2002}+2002\right)+x^2-2002.2001=0\)

\(\Leftrightarrow\dfrac{x^4}{\sqrt{x^2+2002}-2002}\left(x^2+2002-2002^2\right)+\left(x^2-2001.2002\right)=0\)

\(\Leftrightarrow\left(x^2-2001.2002\right)\left(\dfrac{x^4}{\sqrt{x^2+2002}-2002}+1\right)=0\)

Done !

Lương Thu Hà
Xem chi tiết
Nguyễn Ngô Minh Trí
30 tháng 10 2017 lúc 20:20

Xin lỗi online math em lỡ spam rồi đừng trừ diem a