Chứng minh với a,b,c,d>0
a+b+c+d/2 <= (a2/a+b) + (b2/b+c)+(c2/c+d) + (d2/d+a)
Em cần gấp ạ ~
Chứng minh rằng với b > 0 , d > 0 và a/b < c/d thì a/b < a+c/b^2 + d^2 < c/d
: biết a^2+b^2/c^2+d^2=ab/cd với a,b,c, d khac 0 Chứng minh rằng :
a/b=c/d hoặc a/b=d/c
Bài 1
a) Cho ba số a, b, c dương . Chứng tỏ rằng M = a/a+b + b/b+c + c/a+c không là số nguyên
b) Cho tỉ lệ thức a/b =c/d ( b,d khác 0 ; a khác -c ; b khác -d ) . Chứng minh: (a+b/c+d)^2 = a^2+b^2/c^2+d^2
c) Cho 1/c = 1/2(1/a+1/b) (Với a, b, c khác 0; b khác c). Chứng minh rằng: a/b=a-c/c-b
j vậy bẹn, đây là sinh lớp 7 mak :v ?
Bài 1:Cho 2 soos hữu tỷ a/b , c/d (b > 0 , d > 0) . Chứng minh rằng a/b < c/d nếu a/d < b/c và ngược lại.
Bài 2: Chứng minh nếu a/b < c/d (b > 0, d >0) thì : a/b < a+c/ b+d < c/d.
giúp mình với mình đang cần gấp lắm
B1: Ta có :a/b < c/d
=>ad/bd < bc/ba
=>ad < bc
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho tỉ lệ thức (a+b)/(c+d)=(a-2*b)/(c-2d) với b;d khác 0.Chứng minh rằng a/b=c/d
. Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có: \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\left(1\right)\)
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{bk-b}{dk-d}=\dfrac{b\left(k-1\right)}{d\left(k-1\right)}=\dfrac{b}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cách giải:
1+1=3
6-6=0
9-9=0
Vậy => 6-6=9-9
(3-3)+(3-3) = 3x3 - 3x3
(1+1)=3
1+1=3
Cho (a2+b2)/(c2+d2)=(a*b)/(c*d) với a;b;c;d khác 0.Chứng minh rằng a/b=c/d hoặc ab=d/c
cho a^2+b^2/c^2+d^2=ab/cd với a,\b,c,d khác 0 và c không bằng +-d chứng minh a/b=d/c
mọi người ơi giúp mình với