Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Wayne Rooney
Xem chi tiết
Phùng Minh Quân
30 tháng 3 2018 lúc 19:42

Ta có : 

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\)\(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\)\(\frac{2^2}{1^2.2^2}-\frac{1^2}{1^2.2^2}+\frac{3^2}{2^2.3^2}-\frac{2^2}{2^2.3^2}+\frac{4^2}{3^2.4^2}-\frac{3^2}{3^2.4^2}+...+\frac{10^2}{9^2.10^2}-\frac{9^2}{9^2.10^2}\)

\(=\)\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=\)\(1-\frac{1}{10^2}\)

\(=\)\(\frac{100-1}{100}\)

\(=\)\(\frac{99}{100}\)

Chúc bạn học tốt ~ 

Lê Tài Bảo Châu
Xem chi tiết

=3/1.4+5/4.9+7/9.16+......+19/81.100

=(1/1-1/4)+(1/4-1/9)+........+(1/81-1/100)

=1-1/100

=99/100<1(đpcm)

le anh
Xem chi tiết
le anh
Xem chi tiết
Phạm Đức Duy
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết
Nguyễn Ngọc phương Linh
15 tháng 7 2016 lúc 20:53

Mình chứng minh A<1 cho bạn nha !

A = \(\frac{3}{1.4}\)\(\frac{5}{4.9}\)+ .....+\(\frac{19}{81.100}\)= 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{9}\)+ ......+ \(\frac{1}{81}\)-  \(\frac{1}{100}\)= 1 - \(\frac{1}{100}\)\(\frac{99}{100}\)< 1

Vậy  A <1 (đpcm)

Nguyễn Ngọc phương Linh
15 tháng 7 2016 lúc 20:48

Phải là CMR : A < 1 chứ

Trần Thanh Nga
Xem chi tiết
lọ lem lạnh lùng
Xem chi tiết
kiwi nguyễn
Xem chi tiết
Minh Linh Dam Duc
26 tháng 6 2019 lúc 15:57

a)Xét vế trái , ta có :

Gọi tổng các số hạng ở vế trái là A

=> A= \(\frac{1}{3}\)+\(\frac{1}{3^2}\)+ ... +\(\frac{1}{3^{99}}\)

=>3A = 1 + \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ ... + \(\frac{1}{3^{98}}\)

=> 3A - A = 1 + \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ ... + \(\frac{1}{3^{98}}\)- ( \(\frac{1}{3}\)+\(\frac{1}{3^2}\)+ ... +\(\frac{1}{3^{99}}\))

=> 2A = 1 - \(\frac{1}{3^{99}}\)

=> A = \(\frac{1}{2}\)- \(\frac{1}{3^{99}.2}\) < \(\frac{1}{2}\)

b)\(\frac{3}{1^2.2^2}\)+ \(\frac{5}{2^2.3^2}\)+ ... + \(\frac{19}{9^2.10^2}\)

= \(\frac{3}{1.4}\)+ \(\frac{5}{4.9}\)+ .... + \(\frac{19}{81.100}\)

= 1 - \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{9}\)+ ... + \(\frac{1}{81}\)- \(\frac{1}{100}\)

= 1 - \(\frac{1}{100}\) <1

Ngọc Lan Tiên Tử
27 tháng 6 2019 lúc 8:36

a,

\(\sum\limits^{99}_{x=1}\left(\frac{1}{3^x}\right)=\frac{1}{2}\)

bài a nó có ............