Cho (P) y= ax^2 +bx+ c xác định a,b,c biết (P) đi qua A(1;4) và nhận I (-1;0) làm đỉnh
Cho hàm số: y=ax^3+bx^2+cx+1.Xác định a,b,c biết đồ thị hs đi qua A(1;3) B(-1;4) và y’(2)=0
\(A\left(1;3\right)\) thuộc đths \(\Rightarrow a+b+c+1=3\Rightarrow a+b+c=2\) (1)
\(B\left(-1;4\right)\) thuộc đths \(\Rightarrow-a+b-c+1=4\Rightarrow-a+b-c=3\) (2)
Ta có \(y'\left(x\right)=3ax^2+2bx+c\)
\(y'\left(2\right)=0\Rightarrow12a+4b+c=0\) (3)
Từ (1), (2) và (3) ta được \(a=-\dfrac{19}{22};b=\dfrac{5}{2};c=\dfrac{4}{11}\)
Vậy hàm số đã cho là \(y=-\dfrac{19}{22}x^3+\dfrac{5}{2}x^2+\dfrac{4}{11}x+1\)
câu 1: xác định hàm số bậc hai y = \(2x^2\)+ bx +c , biết rằng đồ thị của nó có đỉnh là I ( -1 ; 0)
câu 2 : xác định phương trình (P) y=\(ax^2\)+ bx+c đi qua ba điểm A ( 0:-1) B ( 1:-1) C ( -1:1)?
Câu 1:
Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)
Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix}
-1=a.0^2+b.0+c\\
-1=a.1^2+b.1+c\\
1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
c=-1\\
a+b+c=-1\\
a-b+c=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)
Cho hàm số y=ax^2+bx+c đi qua 3 điểm A(-2;2) B(-1;-5) C(1;-1). Xác định a,b,c
\(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=2\left(1\right)\\a-b+c=-5\left(2\right)\\a+b+c=-1\left(3\right)\end{matrix}\right.\)
\(\left(2\right)+\left(3\right)\Leftrightarrow a+c=-3\) \(\Rightarrow b=2\)
\(\Rightarrow4a+c=2+4=6\)
\(\Rightarrow\left\{{}\begin{matrix}a+c=-3\\4a+c=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\c=-6\end{matrix}\right.\)
Cho hàm số y=ax²+ bx + c đi qua 3 điểm A(1;-1) B(2;3) C(-1;-3). Xác định a,b,c
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=3\\a-b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=-4\\a+b+c=-1\\4a+2b+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\a+c=1\\4a+c=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-2\\c=-1\end{matrix}\right.\)
Xác định Parabol (P) : y = ax^2 + bx + c ( a khác 0 ) biết (P) đi qua :
a, điểm E (0; 6) và hàm số y = ax^2 - bx + c đạt giá trị nhỏ nhất là 4 khi x = -2
b, điểm F (1; 16) và cắt Ox tại các điểm có hoành độ là -1 và 5.
xác định hệ số a,b,c của phương trình bậc y= ax^2 +bx+c biết phương trình đi qua 3 điểm(0;-4), (1;0),(2;6)
a, xác định parabol y = ax^2 + bx + c đạt cực tiểu bằng 4 tại x = -2 và đồ thị đi qua A ( 0 ; 6)
b, xác định GTNN của hàm số y = x^2 - 4x + 1
a.
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-2\\4a-2b+c=4\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4a\\4a-2.4a+6=4\\c=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=4a=2\\a=\dfrac{1}{2}\\c=6\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x^2+2x+6\)
b.
\(y_{min}=y_{CT}=\dfrac{4ac-b^2}{4a}=\dfrac{4.1.1-\left(-4\right)^2}{4.1}=-3\)
xác định (P) y=ax2+bx+c biết (P) qua các điểm A, B,C (-1, 3) với A, B là 2 giao điểm của (d) y=4x-7 và (P) y=x2-x-1