chứng tỏ rằng
a:1+3+3^2+3^3+...+3015/7
\(Cho\:A=2^1+2^2+2^3+2^4+...+2^{12}+2^{13}.\:\)Chứng tỏ rằng A chia hết cho 3, cho 7 và 15
\(Cho\:C=3+3^2+3^3+3^4+...+3^9\)Chứng tỏ rằng C chia hết cho 13
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
Cho A = 7 + 72 + 73 + ... + 778. Chứng tỏ rằng A chia hết cho 8
Cho A = 1050 + 68. Chứng tỏ rằng A chia hết cho 121
Cho A = 3 + 32 + 33 + ... + 3155. Chứng tỏ rằng A chia hết cho 121
Mấy bạn hiện đang là CTV hoặc các bạn biết cách làm thì giúp mình với. Cảm ơn các bạn nhiều.
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
a) Cho A = 2+2^2+2^3+...+2^180. Chứng tỏ rằng A chia hết cho 3,cho 7, cho 15
b) Cho B = 3+3^3+3^5+...+3^1991. Chứng tỏ rằng B chia hết cho 13,cho 41
câu hỏi tương tự
cứ di chuột vào câu hỏi ế
Cho A = 1 + 2 + 2 mũ 2 + 2 mũ 3 + …. + 2 mũ 2019
Chứng tỏ rằng A chia hết cho 3 và 7
A = 1 + 2 + 22 + 23 + ... + 22019
Xét dãy số: 0; 1; 2; 3;...;2019 dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là:
(2019 - 0) : 1 + 1 = 2020 (số hạng)
Vì 2020 : 2 = 1010 nên nhóm hai số hạng liên tiếp của A vào nhau ta được A:
A = 1 + 2 + 22 + 23 +...+ 22019
A = (1 + 2) + (22 + 23) + ... + (22018 + 22019)
A = 3 + 22.( 1 + 2) + .... + 22018.(1 + 2)
A = 3. + 22.3 + .... + 22018.3
A = 3.( 1 + 22 + ... + 22018)
Vì 3 ⋮ 3 ⇒ A = 3.(1 + 22 + ... + 22018) ⋮ 3
Vì 2020 : 3 = 673 dư 1 nên nhón 3 hạng tử liên tiếp của A thành một nhóm thì A là tổng của 1 và 673 nhóm khi đó
A = 1 + ( 2 + 22 + 23) + (24 + 25 + 26) + ... + (22017 + 22018 + 22019)
A = 1 + 2.( 1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 22017.(1 + 2 + 22)
A = 1 + 2.7 + 24.7 + ... + 22017 . 7
A = 1 + 7.(2 + 24 + .... + 22017)
Vì 7 ⋮ 7; 1 không chia hết cho 7 nên A không chia hết cho 7
Việc chứng minh A ⋮ 7 là điều không thể xảy ra.
giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5
b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60
c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7
1)Chứng tỏ rằng: A= 2+22+23+...+210
a) A chia hết cho 3
b) A chia hết cho 31
2)Chứng minh rằng với mọi số tự nhiên n thì tích B=(n+4)(n+7) là một số chẵn
3)Cho A= 3+32+33+...+320. Chứng tỏ rằng A là B(112)
1/a/ \(A=2+2^2+2^3+....+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)
\(=2.3+2^3.3+....+2^9.3\)
\(=3\left(2+2^3+.....+2^9\right)⋮3\)
\(\Leftrightarrow A⋮3\left(đpcm\right)\)
b/ \(A=2+2^2+2^3+....+2^{10}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31\)
\(=31\left(2+2^6\right)⋮31\)
\(\Leftrightarrow A⋮31\left(đpcm\right)\)
2/ Với mọi n là số tự nhiên thì \(n\) có hai dạng :
\(\left[{}\begin{matrix}n=2k\\n=2k+1\end{matrix}\right.\)
+) \(n=2k\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)\)
Mà \(2k+4⋮2\)
\(\Leftrightarrow\left(2k+4\right)\left(2k+7\right)⋮2\)
\(\Leftrightarrow B\) là số chẵn
+) \(n=2k+1\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+1+4\right)\left(2k+1+7\right)=\left(2k+5\right)\left(2k+8\right)\)
Mà \(2k+8⋮2\)
\(\Leftrightarrow\left(2k+5\right)\left(2k+8\right)⋮2\)
\(\Leftrightarrow B\) là số chẵn
Vậy...
1/
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(A=2.3+2^3.3+2^5.5+...+2^9.3=3.\left(2+2^3+...+2^9\right)\)
Do \(3⋮3\Rightarrow A⋮3\)
\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)
\(A=2.31+2^6.31=31\left(2+2^6\right)\)
Do \(31⋮31\Rightarrow A⋮31\)
2/ \(B=\left(n+4\right)\left(n+7\right)\)
Nếu n chẵn, đặt \(n=2k\Rightarrow B=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)
Do 2 chẵn nên B chẵn
Nếu n lẻ, đặt \(n=2k+1\Rightarrow B=\left(2k+5\right)\left(2k+8\right)=2\left(2k+5\right)\left(k+4\right)\)
2 chẵn nên B chẵn
Vậy B luôn chẵn với mọi n
3/ Đề là B(112) hay B(121) bạn?
a)Cho B=1/5+1/6+...+1/19.Hãy chứng tỏ rằng B >1
b)Tính nhanh giá trị biểu thức M=3/5+3/7+3/11 trên 4/5+4/7-4/11
c)Chứng tỏ rằng S<1 biết S=3/1x4+3/4x7+3x7x10+...+3/40x43+3/43x46
a. chứng tỏ rằng : A = 1+ 2 +2 mũ 3 + 2 mũ 4 + ........+ 2 mũ 29 chia hết cho 7
b. chứng tỏ rằng : A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +......+ 2 mũ 90 chia hết cho 21
Tôi tên là Ngọc Anh . Năm nay Tôi 11 tuổi. Tôi không biết bài này