Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Văn Dương
Xem chi tiết
Trần Công Nhật
Xem chi tiết
Nguyễn Lê Hoài Thương
Xem chi tiết
Dũng Lê Trí
Xem chi tiết
Trương Minh Trọng
27 tháng 6 2017 lúc 10:07

Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:

\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)

Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:

\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)

Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)

Dũng Lê Trí
27 tháng 6 2017 lúc 10:34

Hay ghê :)

Trương Minh Trọng
27 tháng 6 2017 lúc 11:01

Cảm ơn bạn quá khen!

super xity
Xem chi tiết
Nguyễn Quốc Khánh
1 tháng 12 2015 lúc 21:11

Gọi thương của phép chia F(x) cho G(x) là A(x)

Ta có

G(x)=x^2-3x+2=(x-2)(x-1)

Ta có

F(x)=G(x).A(x)

<=>x^4 -3x^3+x^2+ax+b=(x-2)((x-1).A(x)

Với x=2

=>-4+2a+b=0

<=>2a+b=4(1)

Với x=1

=>-1+a+b=0

<=>a+b=1(2)

Từ (1) và (2)

Ta có

2a+b=4 và a+b=1

giải ra =>a=3,b=-2

nhớ tick mình nha

 

Nguyen Thi Ha
Xem chi tiết
Đỗ Anh Thư
Xem chi tiết
Oo Bản tình ca ác quỷ oO
Xem chi tiết
nguyen thi ngoc duyen
Xem chi tiết
Hoa Thiên Cốt
Xem chi tiết
Thanh  Quốc
17 tháng 2 2017 lúc 15:18

sử dụng định lí bê du đi:
x2+x-2=0

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\) = 0

\(\Rightarrow\)\(\left\{\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=-2\\x=1\end{matrix}\right.\)thay x=1 hoặc x=-2 vào f(x) ta đc f(1) hoặc f(-2):

13+a.1+b=>a+b=-1 vậy a=-\(\frac{1}{b}\) và b=\(-\frac{1}{a}\)