Cho đường tròn (O; R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A ( A khác B ). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) ( M và N là các tiếp điểm). Gọi I là trung điểm của BC.
a, Chứng minh A, O, M, N, I cùng thuộc một đường tròn
b, Gọi K là giao điểm của MN và BC. H là giao điểm của MN và AO. Chứng minh rằng AK. AI = AB. AC = AM^2
c, Chứng minh: \(\frac{2}{AC}=\frac{1}{AB}+\frac{1}{AC}\)