2011*2012+4022/2013 * 2014-4028
2011 nhân 2012 + 4022
phần
2013 nhân 2014 - 4028
= 2011 x 2012 + 2011 x 2 / 2013 x 2014 - 2014 x 2
= 2011 x 2014 / 2014 x 2011 = 1
k mk nha
2011 nhân 2012 + 4022
phần
2013 nhân 2014 - 4028
tính nhanh
(2011 × 2012 + 4022) /(2013 × 2014 - 4028)= 0
(2011 × 2012 + 4022) /(2013 × 2014 - 4028)=1
Tính nhanh:2011*2012+4022/2013*2014-4028 các bạn ơi cái này tính ra phân số nhé:
2354Y5EJYRU5421W3ERTHJY432ER
4 050 154 / 4 050 154
ok bạn nhớ !!!
bạn tính như thế nào vậy bạn ghi luôn cả cách giải đi
2011 nhân 21012 + 4022
phần
2013 nhân 2014 + 4028
Chứng minh rằng : \(\frac{1}{4028}< \left(\frac{1}{2}.\frac{3}{4}.....\frac{2011}{2012}.\frac{2013}{2014}\right)^2< \frac{1}{2015}\)
Cho M=2011 -4022 : (x-2011) / 2011 x 2012 x 2013
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
\(\frac{1}{4028}< \left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot.......\cdot\frac{2011}{2012}\cdot\frac{2013}{2014}\right)^2< \frac{1}{2015}\)
A=(2011/2012)+(2012/2013)+(2013/2014)
B=(2011+2012+2013)/(2012+2013+2014)