Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê duy mạnh
Xem chi tiết
lê duy mạnh
4 tháng 8 2019 lúc 15:52

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

lê duy mạnh
Xem chi tiết
lê duy mạnh
5 tháng 8 2019 lúc 8:19

MN ƠI GIÚP E MAI E ĐI HOK RỒ

lê duy mạnh
5 tháng 8 2019 lúc 8:28

GIÚP E MN OEWI

hương Thanh
Xem chi tiết
phan tuấn anh
Xem chi tiết
alibaba nguyễn
7 tháng 1 2017 lúc 9:15

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)

Đơn giản rồi làm tiếp nhé

alibaba nguyễn
7 tháng 1 2017 lúc 9:29

\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)

Với x = 0 thì y = 0

Với x \(\ne\)0 thì nhân pt trên cho x ta được

\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế được

\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)

\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)

\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)

Tới đây thì đơn giản roofin làm tiếp nhé

phan tuấn anh
7 tháng 1 2017 lúc 10:34

thank nha 

Phạm Tuấn Kiệt
Xem chi tiết
Cô Hoàng Huyền
20 tháng 9 2017 lúc 9:34

Do \(x^2+y^2+xy=1\Rightarrow x-y=\left(x-y\right)\left(x^2+y^2+xy\right)=x^3-y^3\)

Tức là ta có hệ mới \(\hept{\begin{cases}x^3-y^3=x-y\\x^3+y^3=x+3y\end{cases}}\)

Trừ từng vế của phương trình dưới cho phương trình trên, ta có \(2y^3=4y\Rightarrow2y\left(y^2-2\right)=0\Rightarrow\orbr{\begin{cases}y=0\\y=\sqrt{2}\vee y=-\sqrt{2}\end{cases}}\)

Nếu y = 0 thì \(x^2=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Nếu \(y=\sqrt{2}\) thì \(x^2+2+\sqrt{2}x=1\Rightarrow x^2+\sqrt{2}x+1=0\) (Vô nghiệm)

Nếu \(y=-\sqrt{2}\) thì \(x^2+2-\sqrt{2}x=1\Rightarrow x^2-\sqrt{2}x+1=0\) (Vô nghiệm)

Tóm lại phương trình có 2 nghiệm \(\left(1;0\right)\) và \(\left(-1;0\right).\)

trần gia bảo
Xem chi tiết
Thiên An
Xem chi tiết
alibaba nguyễn
12 tháng 2 2017 lúc 8:55

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

alibaba nguyễn
12 tháng 2 2017 lúc 9:01

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

alibaba nguyễn
12 tháng 2 2017 lúc 9:15

c/ \(\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\\sqrt{3x+1}+\sqrt{3y+1}=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\3x+3y+2+2\sqrt{9xy+3x+3y+1}=16\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\)thì ta có

\(\hept{\begin{cases}2a-\sqrt{b}=3\\3a+2\sqrt{9b+3a+1}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=4a^2-12a+9\\3a+2\sqrt{36a^2-105a+82}=14\end{cases}}\)

Tiếp tục chuyển vế pt dưới rồi bình phương 2 vế tìm được a có a suy ra b từ đây tìm được x, y

Nguyễn Thu Thảo
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
Đen đủi mất cái nik
17 tháng 1 2019 lúc 19:51

\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)

Đen đủi mất cái nik
17 tháng 1 2019 lúc 19:55

b,

\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)

Tự xử đoạn còn lại nhé