Tìm giá trị nhỏ nhất của biểu thức
\(M=2x^2-8x+\sqrt{x^2-4x+5}+6\)
Tìm giá trị nguyên của x để biểu thức M=2x-5/x có giá trị nhỏ nhất.
Ta có :
\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\) và có GTNN
\(\Rightarrow\)\(x=1\)
\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)
Vậy \(M_{min}=-3\) khi \(x=1\)
Tìm giá trị nhỏ nhất của biểu thức \(M\text{ = |x-3|+|x-5|+x^2-8x+2019}\)
\(M=\left|x-3\right|+\left|x-5\right|+x^2-8x+2019\)
\(=\left|x-3\right|+\left|5-x\right|+x^2-8x+16+2013\)
\(=\left|x-3\right|+\left|5-x\right|+\left(x-4\right)^2+2013\)
Ta thấy \(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|\ge2\)
\(\left(x-4\right)^2\ge0\)
\(\Rightarrow M=\left|x-3\right|+\left|5-x\right|+\left(x-4\right)^2+2013\ge2+0+2013=2015\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-3\right|+\left|5-x\right|=2\\\left(x-4\right)^2=0\end{cases}\Leftrightarrow}x=4\)
hicc mình trừ nhầm :">
Dòng 2 trở đi là + 2003 nhá
GTNN = 2005
T^T
tìm giá trị nhỏ nhất của biểu thức A=x2+2x+5
a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4
Dấu bằng xảy ra <=>x+1=0 <=>x=-1
\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)
Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy giá trị nhỏ nhất của A là 4 khi x= -1
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:
Q = \(\sqrt{x+1}+\sqrt{6-x}\)
ta có
can x+1 >=0 voi moi x
can 6-x >=0 voi moi x
=> căn x+1 + căn 6-x >= 0
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7 => Q\(\ge\)\(\sqrt{7}\)
dấu bằng khi x=-1 hoặc x=6
Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14 => Q\(\le\) \(\sqrt{14}\)
dấu bằng khi x+1 = 6-x <=> 2x =5 <=> x=2.5
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=x+\sqrt{4-x^2}\)
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
Tìm giá trị nhỏ nhất của biểu thức A biết :
A= \(\sqrt[]{x^2+9+2019}\)
Lời giải:
Ta thấy: $x^2\geq 0$ với mọi $x$ nên $x^2+9+2019\geq 9+2019=2028$
$\Rightarrow A=\sqrt{x^2+9+2019}\geq \sqrt{2028}$
Vậy GTNN của $A$ là $\sqrt{2028}$ khi $x=0$
tìm giá trị nhỏ nhất của biểu thức sau:
M=x^2+2y^2+2xy-4x+5
giup mk vs mk dang can gap
\(x^2+2xy+y^2\) +\(y^2-4y+4+1\)
=\(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)
dau = xay ra \(\Leftrightarrow y=2\),\(x=-2\)
min M =1 khi x=-2 y=2
1) Tìm x, bIết:| 2x+5 |+4\(\ge\)25
2) Tìm giá trị nhỏ nhất của biểu thức:
a) A= |2x-3| - 5
b) B= |2x-1|+|3-2x|+5
3) Tìm giá trị lớn nhất của biểu thức:
A= -|2X+1|+7
B= |2x+3|-|2x+2|
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
tìm giá trị nhỏ nhất của biểu thức E= ( x-4)^2 + ( 2x -1)^2
MẶC DÙ TA CÓ A>HOẶC =0,,NHƯNG CHƯA THỂ KẾT LUẬN ĐƯỢC MIN CỦA A=0 VÌ KO TỒN TẠI GIÁ TRỊ NÀO CỦA X ĐỂ A=0
\(\Leftrightarrow E=x^2-8x+16+4x^2-4x+1\)
\(\Leftrightarrow E=5x^2-12x+17\)
\(\Leftrightarrow E=5\left(x-\frac{6}{5}\right)^2+\frac{49}{5}\ge\frac{49}{5}\)
vậy GTNN của E=49/5 tại x=6/5