Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shuu Tsukiyama
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 7 2021 lúc 17:50

\(x^4+ax^3+bx-1=\left(x^2-1\right)\left(x^2+1\right)+ax\left(x^2-1\right)+\left(a+b\right)x\)

\(\Rightarrow x^4+ax^3+bx-1\) chia hết cho \(x^2-1\) khi \(a+b=0\)

\(\Leftrightarrow b=-a\)

(Chỉ cần a; b là 2 số đối nhau là đủ, có vô số cặp a;b thỏa mãn đề bài, ví dụ (a;b)=(1;-1); (2;-2); (3;-3)... đều đúng)

tran nguyen ngoc mai
Xem chi tiết
Nguyễn Ngọc Oanh
Xem chi tiết
Nguyễn Ngọc Lộc
7 tháng 2 2021 lúc 7:51

- Để hai đa thức trên chia cho nhau hết thì :\(\left\{{}\begin{matrix}7a-4=0\\b-2\left(1-3a\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7a=4\\6a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{4}{7}\\b=-\dfrac{10}{7}\end{matrix}\right.\)

Vậy ...

Tiên Phụng
Xem chi tiết
TAIKHOANDUNGDEHOI
Xem chi tiết
Hồ huynh ngân
Xem chi tiết
Dr.STONE
30 tháng 1 2022 lúc 11:00

undefined

Akai Haruma
30 tháng 1 2022 lúc 13:36

Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$

$x^2+x-2=(x-1)(x+2)$

Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$

$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức) 

$\Leftrightarrow a+b-1=-8a+4b+32=0$

$\Leftrightarrow a=3; b=-2$ 

 

Linh Chi
Xem chi tiết
DƯƠNG NHẬT TÂN
Xem chi tiết
Mark Tuan
Xem chi tiết
Ta ko tên
Xem chi tiết