Giải phương trình:
\(\frac{9x}{2x^2+x+3}-\frac{x}{2x^2-x+1}=8\)
Giải phương trình sau:
\(\frac{9x}{2x^2+x+3}-\frac{x}{2x^2-x+3}=8\)
\(\frac{9x}{2x^2+x+3}-\frac{x}{2x^2-x+3}=8\)
\(\Leftrightarrow9x\left(2x^2-x+3\right)-x\left(2x^2+x+3\right)=8\left(2x^2+x+3\right)\left(2x^2-x+3\right)\)
\(\Leftrightarrow16x^3-10x^2+35x=32x^4-88x^2+88x-192\)
\(\Leftrightarrow16x^3-10x^2+35x-32x^4+88x^2-88x+192=0\)
\(\Leftrightarrow16x^3+78x^2-53x-32x^4+192=0\)
Nhưng vì \(16x^3+78x^2-53x-32x^4+192\ne0\)
Nên: phương trình vô nghiệm.
Giải phương trình:
\(\frac{9x}{2x^2+x+3}_{ }-\frac{x}{2x^2-x+3}_{ }=8\)
Giải phương trình sau
\(\frac{2x-1}{4x^2+2x+1}\) \(-\frac{2}{2x-1}=\frac{8x+2}{1-8x^3}\)
\(\frac{2x+9}{x^2+9x+8}-\frac{2x+15}{x^2+15x+56}+\frac{2x+10}{x^2+10x+21}=\frac{4}{3}\)
a,Giải phương trình sau : (2x + 3)(x-5)=42 +6x
b, Gải phương trình sau: \(\frac{x}{2x-6}-\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,Gải bất phương trình sau và biểu diễn nghiệm trên trục số : \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
Giải các phương trình sau
a/ 3(x-1) ( 2x-1) = 5 (x+8) ( x -1 )
b/ 9x2- 1 = ( 3x +1 ) (4x +1 )
c/ x3- 5x2 + 6x = 0
d/ \(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}=\frac{8}{4^2-1}\)
Giải phương trình:
\(a,3\sqrt{x}+8=9x+\frac{1}{x}+\frac{1}{\sqrt{x}}\)
\(b,\frac{4x^2+8x+1}{2x+1}=5\sqrt{x}\)
1. Giải phương trình sau: \(\frac{9x}{2x^2+3x+3}-\frac{x}{2x^2-x+3}=8\)2. Tìm các số nguyên x, y thỏa mãn \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
Giải phương trình:\(\frac{9x}{2x^2+x+3}-\frac{x}{2x^2-x+3}=8\)
ĐK: \(\forall x\in R\)
Với \(x=0\) không thỏa mãn pt
Với \(x\ne0\):
PT\(\Leftrightarrow\frac{9}{2x+1+\frac{3}{x}}-\frac{1}{2x-1+\frac{3}{x}}=8\)
Đặt \(2x+\frac{3}{x}=t\Leftrightarrow2x^2-tx+3=0\)
Khi đó: \(\frac{9}{t+1}-\frac{1}{t-1}=8\) \(\Leftrightarrow\frac{8t-10}{t^2-1}=8\Leftrightarrow8t^2-8=8t-10\)
\(\Leftrightarrow8t^2-8t+2=0\) \(\Leftrightarrow t=\frac{1}{2}\)
\(\Leftrightarrow2x^2-\frac{1}{2}x+3=0\) (Vô no)
Vậy PTVN.
Xét $x=0$ không phải là nghiệm
Xét $x \le 0$:
\( \dfrac{{9x}}{{2{x^2} + x + 3}} - \dfrac{x}{{2{x^2} - x + 3}} = 8\\ \Leftrightarrow \dfrac{9}{{2x + 1 + \dfrac{3}{x}}} - \dfrac{1}{{2x - 1 + \dfrac{3}{x}}} = 8 \)
Đặt \(2x + \dfrac{3}{x} = t\), ta có phương trình:
\(\dfrac{9}{{t + 1}} - \dfrac{1}{{t - 8}} = 0 \Leftrightarrow - 8{t^2} + 8t - 2 = 0 \Rightarrow t = \dfrac{1}{2}\)
\( \Rightarrow 2x + \dfrac{3}{x} = \dfrac{1}{2}\\ \Leftrightarrow 4{x^2} - x + 6 = 0\\ \Leftrightarrow {\left( {2x - \dfrac{1}{4}} \right)^2} + \dfrac{{95}}{6} = 0 \)
Vậy phương trình vô nghiệm
Giải phương trình sau
\(\frac{2x-1}{3x^2+7\:x+2}+\frac{3}{9x^2+15x+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x+2}\)
\(\frac{2x-1}{3x^2+7x+2}+\frac{3}{9x^2+15x+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{2x-1}{\left(3x+1\right)\left(x+2\right)}+\frac{3}{\left(3x+1\right)\left(3x+4\right)}-\frac{2x+7}{\left(4x+3\right)\left(x-3\right)}=\frac{5}{\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{3x+1}+\frac{1}{3x+1}-\frac{1}{3x+4}+\frac{1}{3x+4}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{x-3-x-2}{\left(x+2\right)\left(x-3\right)}=\frac{5\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow5x-3=-5\)
\(\Leftrightarrow x=-\frac{2}{5}\)
Chúc bạn học tốt !!!