cho tỉ lệ thức a/b = c/d. chứng minh các tỉ lệ thức sau a^2-b^2 / ab = c^2-d^2/cd ,
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức là có nghĩa ) :
a) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức: a/b= c/d. Chứng minh rằng ta có các tỉ lệ thức sau:ab/cd=a^2 - b^2= c^2- d^2
Các bạn giúp mk vs ạ
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau tao có
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)
Từ (1) và (2) ta có ĐPCM
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}.\) chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức đều có nghĩa)
\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) thì \(a=bk,c=dk\).
\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\\ \frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)
Do đó: \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Cho tỉ lệ thức a/b=c/d . chứng minh rằng ta có các tỉ lệ thức sau ( giả thiết các tỉ lệ thức đều có nghĩa) : a) 2a+3b/2a-3b = 2c+3d/2c-3d b) ab/cd= a^2 - b^2/c^2 - d^2 c) (a+b/c+d)^2 = a^2+b^2/c^2+d^2
Cho tỉ lệ thức a/b = c/d. Chứng minh rằng ta có các tỉ lệ thức sau (giá trị các tỉ lệ thức đều có nghĩa)
a) 2a +3b / 2a - 3b = 2c + bd / 2c - 3d
b)ab/cd = a2 + b2/ c2 - d2
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức đều có nghĩa)
a,\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b,\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
từ\(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Cho tỉ lệ thức sau \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng ta có các tỉ lệ thức sau (giả sử các tỉ lệ thức đều có nghĩa):
\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh ta có các tỉ lệ thức sau ( giả thiết các tỉ lệ thức đều có nghĩa) :
a. \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b.\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh các tỉ lệ thức sau:
\(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd};\dfrac{\left(c+d\right)^2}{c^2+d^2}\)