Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Thành
Xem chi tiết
revan2709
Xem chi tiết
Oo Bản tình ca ác quỷ oO
Xem chi tiết
Bo Nguyen
Xem chi tiết
Ariels spring fashion
Xem chi tiết
Tô Hoài An
1 tháng 11 2020 lúc 20:21

\(M=\left(\frac{2+\sqrt{a}}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\frac{a\left(\sqrt{a}+1\right)-\left(\sqrt{a}+1\right)}{a}\)

\(=\frac{\left(2+\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}-2+a-\sqrt{a}-a-\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}\left(\sqrt{a-1}\right)}{a\left(\sqrt{a}+1\right)}=\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

Khách vãng lai đã xóa
Tô Hoài An
1 tháng 11 2020 lúc 20:29

\(N=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{a+1+2\sqrt{a}-a-1+2\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{4\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}=4\sqrt{a}\left(\frac{1}{a-1}+1\right)\cdot\frac{a-1}{\sqrt{a}}=4\cdot\left(a-1\right)\left(\frac{1}{a-1}+1\right)\)

\(=4\cdot\left(a-1\right)\)

vừa tham khảo cách làm vừa check lại hộ tớ với nhé :33 

Khách vãng lai đã xóa
Nguyễn Khánh Ly
1 tháng 11 2020 lúc 20:35
\(Với\)\(a>0\);\(a\ne1\)ta có:

\(M=(\frac{2+\sqrt{a}}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}).(\frac{a\sqrt{a}+a-\sqrt{a}-1}{\sqrt{a}})\)

\(=[\frac{\sqrt{a}+2}{(\sqrt{a}+1)^2}-\frac{\sqrt{a}-2}{(\sqrt{a}+1)(\sqrt{a}-1)}].\frac{(a\sqrt{a}-\sqrt{a})+(\sqrt{a}-1)}{\sqrt{a}}\)

\(=[\frac{(\sqrt{a}-2).(\sqrt{a}-1)}{(\sqrt{a}+1)^2.(\sqrt{a}-1)}-\frac{(\sqrt{a}-2).(\sqrt{a}+1)}{(\sqrt{a}+1)^2.(\sqrt{a}-1)}].\frac{\sqrt{a}(a-1)+(a-1)}{\sqrt{a}}\)

\(=[\frac{a+\sqrt{a}-2}{(\sqrt{a}+1)(a-1)}-\frac{a-\sqrt{a}-2}{(\sqrt{a}+1)(a-1)}].\frac{(a-1).(\sqrt{a}+1)}{\sqrt{a}}\)

\(=\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{(a-1).(\sqrt{a}+1)}.\frac{(a-1)(\sqrt{a}+1)}{\sqrt{a}}\)

\(=\frac{2\sqrt{a}}{(a-1)(\sqrt{a}+1)}.\frac{(a-1)(\sqrt{a}+1)}{\sqrt{a}}\)

\(=2\)

Vậy \(M=2\)

\(Với\)\(a>0;a\ne1:\)

\(N=(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}).(\sqrt{a}-\frac{1}{\sqrt{a}})\)

\(=[\frac{(\sqrt{a}+1).(\sqrt{a}+1)}{\left(\sqrt{a}-1\right).(\sqrt{a}+1)}-\frac{(\sqrt{a}-1).(\sqrt{a}-1)}{(\sqrt{a}-1).(\sqrt{a}+1)}+\frac{4\sqrt{a}(a-1)}{(\sqrt{a}-1).(\sqrt{a}+1)}].\frac{a-1}{\sqrt{a}}\)

\(=\frac{(\sqrt{a}+1)^2-(\sqrt{a}-1)^2+(4a\sqrt{a}-4\sqrt{a})}{(\sqrt{a}-1).(\sqrt{a}+1)}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{4a\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)\(=4a\)

Vậy \(N=4a\)

Khách vãng lai đã xóa
MiMi -chan
Xem chi tiết
Nguyễn Huy Tú
18 tháng 5 2021 lúc 16:35

a,Với \(a>0;a\ne1\)

 \(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)

b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)

\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)

Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)

Khách vãng lai đã xóa
Đinh Thị Hoàng Yến
Xem chi tiết
Huỳnh Diệu Linh
Xem chi tiết
Ánh Right
Xem chi tiết
Lê Thị Thục Hiền
22 tháng 8 2019 lúc 21:48

c,Có x=\(\frac{1}{2}\left(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\right)\left(0< a< 1\right)\)

<=> \(x=\frac{1}{2}\left(\frac{\sqrt{1-a}}{\sqrt{a}}-\frac{\sqrt{a}}{\sqrt{1-a}}\right)\) (vì 0<a<1)

<=>\(x=\frac{1}{2}.\frac{\sqrt{1-a}^2-\sqrt{a}^2}{\sqrt{a}.\sqrt{1-a}}=\frac{1}{2}.\frac{1-a-a}{\sqrt{a\left(1-a\right)}}=\frac{1}{2}.\frac{1-2a}{\sqrt{a\left(1-a\right)}}=\frac{1-2a}{2\sqrt{a\left(1-a\right)}}\)(1)

<=> 1+x2=1+\(\frac{1}{4}.\frac{\left(1-2a\right)^2}{a\left(1-a\right)}\)= \(\frac{4a\left(1-a\right)+\left(1-2a\right)^2}{4a\left(1-a\right)}\)

<=> 1+x2=\(\frac{4a-4a^2+1-4a+4a^2}{4a\left(1-a\right)}=\frac{1}{4a\left(1-a\right)}\)>0

<=> \(\sqrt{1+x^2}=\frac{1}{2\sqrt{a\left(1-a\right)}}\) (2)

Thay (1),(2) vào C có:

C= \(\frac{2a.\frac{1}{2\sqrt{a\left(1-a\right)}}}{\frac{1}{2\sqrt{a\left(1-a\right)}}-\frac{1-2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{1-1+2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{2a}{2\sqrt{a\left(1-a\right)}}}=1\)

Vậy C=1

Kudo Shinichi
22 tháng 8 2019 lúc 21:16

Kudo Shinichi
22 tháng 8 2019 lúc 21:18

Nếu thấy to thì bạn nhấn tổ hợp phím (Ctrl -) để thấy rõ nhé