Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Như Quỳnh
Xem chi tiết
Potter Harry
19 tháng 12 2015 lúc 19:51

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

Ngô Phúc Dương
19 tháng 12 2015 lúc 19:48

làm ơn làm phước cho mk 3 tick đi mk mà

please

thapkinhi
Xem chi tiết
Akai Haruma
18 tháng 7 2024 lúc 23:49

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

Akai Haruma
18 tháng 7 2024 lúc 23:50

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Akai Haruma
18 tháng 7 2024 lúc 23:51

3.

Giả sử $a,a+b$ không phải 2 số nguyên tố cùng nhau. Khi đó, đặt $d=ƯCLN(a,a+b)$. Điều kiện: $d\geq 2$.

$\Rightarrow a\vdots d; a+b\vdots d$
$\Rightarrow (a+b)-a\vdots d$

$\Rightarrow b\vdots d$

Vậy $a\vdots d; b\vdots d\Rightarrow d=ƯC(a,b)$. Mà $d\geq 2$ nên $a,b$ không phải 2 số nguyên tố cùng nhau (trái với đề bài) 

Vậy điều giả sử là sai. Tức là $a,a+b$ là 2 số nguyên tố cùng nhau.

linh
Xem chi tiết
Xyz OLM
4 tháng 12 2020 lúc 20:44

Gọi ƯCLN(n + 3 ; n + 4) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\Rightarrow\left(n+4\right)-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy n + 3 và n + 4 là 2 số nguyên tố cùng nhau

Khách vãng lai đã xóa
Chibi
4 tháng 12 2020 lúc 20:51
Gọi d là ƯCLN ( n + 3, n+4) n+3 chia hết cho d n+4 chia hết cho d Suy ra (n+3)-(n+4) chia hết cho d 1 chia hết cho d Suy ra d = 1 Vậy (n+3) và ( n+4 ) là hai số nguyên tố cùng nhau
Khách vãng lai đã xóa
nguyễn thị ngọc ánh
Xem chi tiết
Đinh Bảo Châu Thi
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
Hoàng Thị Vân
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
Nguyễn Đức An
Xem chi tiết