\(\frac{x}{y}=\frac{2}{5}\) và x+y=120
Tìm x,y,z
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x + y + z = -120
\(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Leftrightarrow\frac{-6x}{-11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{-x}{\frac{-11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)
\(\Rightarrow\frac{-x+y+z}{\frac{-11}{6}+\frac{2}{9}+\frac{5}{18}}=\frac{-120}{\frac{-4}{3}}=90\)
\(-x=90\times\frac{-11}{6}=-165\Rightarrow x=165\)
\(y=90\times\frac{2}{9}=20\)
\(z=90\times\frac{5}{18}=25\)
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
\(\frac{6}{11}.x=\frac{9}{2}.y=\frac{18}{5}.z\)và x+y-z= -120. x+y+z=?
Tìm x,y,z biết \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=-120
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=>x=165,y=20,z=25
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
1 . Tìm x,y,z
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và 2.x2 + 2.y2-3.z2= -100
b) \(\frac{6}{11}.x=\frac{9}{2}.y=\frac{18}{5}.z\)và -x+y+z = -120
c) 2x = -3y =4z và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Tìm x, y, z biết :
a. 5x = 8y = 20z và x - y -z = 3
b. \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)Và -x + y + z = 120
c.\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)Và x X y X z = 20
d. x . y = -30 ; y . z = 42 và z - x = -12
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5z}\) và -x+y+z=-120
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và x.y.z=20
Câu thứ 2:
Đặt x/12 = y/9 = z/5 =k.
=> x= 12k
y= 9k
z=5k
=> xyz = 12k * 9k * 5k = 20
=> 540 * k^3 = 20
k^3 = 1/27
k= 1/3
=> x= 12k = 12* 1/3 = 4
y= 9k = 9 * 1/3 = 3
z= 5k = 5* 1/3 = 5/3
Vậy x=
y=
z=
Đặt \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5x}=k\)
=> \(x=\frac{11}{6}k\)
\(y=\frac{2}{9}k\)
\(z=\frac{18}{5k}\)
Ta có; \(-x+y+z=-120\)
\(\Leftrightarrow-\frac{11}{6}k+\frac{2}{9}k+\frac{18}{5k}=-120\)
(đến đây thì ko bt làm sao nữa)
Ba số x,y,z thỏa mãn: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và y-x+z=-120. Tính x+y+z=...
a)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{9}{7},\frac{y}{z}=\frac{7}{3}\)và x-y+z=-15
c) \(\frac{6}{11}.x=\frac{9}{2}.y=\frac{18}{5}.z\)và-x+y+z=-120
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Ba số x, y, z thỏa mãn :\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x + y + z = -120
Hỏi x+y+z=?
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)