Cho tổng M bằng 55 + 40+ 75 + x tìm số tự nhiên x biết sao cho a m chia hết cho 2 b m chia hết cho 5 dư
Bài 1 : tìm số tự nhiên lớn nhất có 3 chữ số sao cho số đó chia cho 30 thì dư 7 và chia cho 40 thì dư 17
Bài 2 : Tính tổng các số tự nhiên n<20 biết rằng 4n - 1 chia hết cho 5
Bài 3 : tìm n sao cho : 3n +40 chia hết n+3
Bài 4 tìm n sao cho n2 + 36 chia hết cho n -1
Bài 5: Tìm hai số a và b biết ab bằng 25200 và (a;b) = 60
bài 6: Tìm hai số tự nhiên a và b biết (a;b) = 15 và [a;b] = 165
a biết thương là 3 số chia là 7 và số dư là 5 tìm số bị chia x ?
b biết thương là 5 số chia là 9 số dư là 0 tìm số bị chia y?
c biết số tự nhiên n chia hết cho 2 hãy tìm số n theo số chia 2 và thương là k?
d biết số tự nhiên m chia hết cho 3 hãy tìm số m theo số chia 3 , thương là p và số dư
a) Số bị chia là:3x7+5=26
b) Số bị chia là:5x9+0=45
Câu 1 : chia 129 cho một số ta được số dư là 10 . Chia 61 cho số đó ta cũng được số dư là 10 . Tìm số chia
Câu 2 : 2 số tự nhiên a,b chia cho m có cùng số dư lớn hơn hoặc = b.[a-b]chia hết cho m
Câu 3 : cho tập hợp = { 1 ; 13 ; 21 ; 29 ; 52 } Tìm x,y thuộc M biết 30 < x-y<40
Bài làm:
câu 1:
Số đó phải lớn hơn 10.Gọi a là số đó.
129:a=b dư 10 => a.b+10=129 ( b là thương) => a= (129-10)/b=119/b
61:a=c dư 10 => a.c +10 ( c là thương) => a=51/c
a=119/b = 51/c
119 chỉ chia hết cho 7 và 17: 119/17 = 7
51 chia chỉ chia hết cho 3 và 17 : 51/3 = 1
Mà số đó lớn hơn 10 nên a=17
Số đó là 17.
Câu 1 :
Gọi số đó là a (a E N)
Ta có : 129 : a dư 10 ; 61 chia a cũng dư 1 => 61 - 10 ; 129 - 10 sẽ chia hết cho a
<=> 51 và 119 sẽ chia hết cho a mà 51 = 17.3
119 = 17.7
=> a = 17
Giúp mình với nha mình đang cần gấp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a, Tìm các số tự nhiên x sao cho 24 chia hết (2x-2)
b, Tìm các số tự nhiên x sao cho 7 chia hết (2x+1)
c, Biết a chia cho 5 dư 3 còn b chia cho 5 dư 4.Tìm số dư của a+b khi chia cho 5?
a, Từ 0 đến 13
b, Từ 0 đến 3
Chứng tỏ rằng:
a. Trong 3 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho tổng của chứng chia hết cho 2.
b. Nếu hai số tự nhiên a và b (a>b) khi chia cho số tự nhiên m có cùng số dư thì a-b chia hết cho m.
c. Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.
Bài 1 : Tìm ƯC ( 48 ; 79 ;72 )
Bài 2 : Tìm số tự nhiên x biết
160 chia hết cho x ; 152 chia hết cho x ; 76 chia hết cho x
Và x lớn nhất
Bài 3 : Một lớp có 28 nam và 24 nữ . Có bao nhiêu cách chia tổ sao cho số học sinh nam và nữ trong mỗi tổ bằng nhau . Cách chia nào để mỗi tổ có số học sinh ít nhất.
Bài 4 : Tìm số tự nhiên n sao cho 13n + 7 chia hết cho 5
Bài 5 : Tìm số tự nhiên b biết rằng chia 326 cho b thì dư 11 , còn chia 553 chia b thì dư 13
Bài 1 :
ƯC( 48 ; 79 ; 72 ) = 1
Bài 2 :
160 \(⋮\)x ; 152 \(⋮\)x ; 76 \(⋮\)x và x lớn nhất
=> x là ƯCLN(160;152;76)
Ta có :
160 = 25 . 5
152 = 23 . 19
76 = 22 . 19
=> ƯCLN(160;152;76 ) = 4
Vậy x = 4
Bài 3 :
Gọi số tổ chia đc sao cho số hs nam và nữ trong mỗi tổ = nhau là a ( a> 1 )
Theo đề bài , ta có :
28 \(⋮\)a ; 24 \(⋮\)a
=> a \(\in\)ƯC( 28 ; 24 )
Ta có :
28 = 22 . 7
24 = 23 . 3
=> ƯCLN( 28 ; 24 ) = 22 = 4
=> ƯC( 28 ; 24 ) = Ư(4) = { 1;2;4 }
=> a \(\in\){ 2 ; 4 } ( a>1 )
Vậy có 2 cách chia
C1 : Số tổ 2 ; Số hs nam : 14 ; số hs nữ : 12
C2 : Số tổ 4 ; số hs nam : 7 ; số hs nữ : 6
Vậy với cách chia thành 4 tổ thì mỗi tổ có số hs ít nhất
Bài 4 :
Ta có :
13n + 7 chia hết cho 5
=> 10n + 3n + 10 - 3 chia hết cho 5
=> 3n - 3 chia hết cho 5
=> 3(n - 1) chia hết cho 5
=> n - 1 chia hết cho 5
=> n - 1 = 5k
=> n = 5k + 1
Vậy với n = 5k + 1(k tự nhiên) thì 13n + 7 chia hết cho 5
bài 1.Tìm số tự nhiên x biết rằng: x + 15 chia hết cho x + 2.
bài 2. Cho C= 1 + 3 + 32 + 33 +... + 311.Chứng minh rằng: a/ A chia hết 13 b/ A chia hết cho 40
bài 3. Chứng tỏ rằng: a/ 109 + 2 chia hết cho 3 b/ 1010 _- 1 chia hết cho 9; c/6100 - 1 chia hết cho 5 ; d/ 2120 - 1110 chia hết cho 2 và 5.
bài 4. Tìm số tự nhiên n biết 288 chia n dư 38 và 414 chia n dư 14.
bài 5. Tìm số tự nhiên a lớn nhất thỏa mãn 543; 3567 đều chia cho a dư 3,
bài 6. Tìm số tự nhiên nhỏ nhất chia 3 dư 1, chia 5 dư 3, chia cho 7 dư 5.
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
Câu 1 ;
tìm số tự nhiên a biết a chia 9 dư 3 , a chia 27 dư 12 , a chia 41 dư 27
Câu 2 :
Cho a,b thuộc N sao thỏa mãn số M= ( 9a + 11b )(5b+11a) chia hết cho 19. Hãy giải thích vì sao M chia hết cho 361
Câu 3
Tìm các số tự nhiên x , y biết 2xy+x+2y = 13
Câu 4
Tìm tất cả các số tự nhiên n đẻ 2019n + 6 là 2 số nguyên tố cùng nhau
Câu 5
Cho A = 20 + 21 + 22 + ...... + 22018 và B = 22019
Chứng minh A , B là 2 số tự nhiên liên tiếp
Bài 5:Cho a chia hết cho c và b chia hết cho c .Chứng minh rằng ma+nb chia hết cho c , ma - nb chia hết cho c với m,n e N
Bài 6:Chứng minh rằng
a)Tổng của ba số tự nhiên liên tiếp chia hết cho 3.
b) Tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Bài 7:tìm số tự nhiên n biết
a)n+10 chia hết cho n
b)n+16 chia hết cho n+1
c)3n+24 chia hết cho n+2
giúp m với tối m phải nộp r