Giải hệ phương trình: \(\hept{\begin{cases}x^2+yz=y+z\\y^2+zx=z+x\\z^2+xy=x+y\end{cases}}\)
Giải hệ phương trình:
a)\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{8}{3}\\\frac{yz}{y+z}=\frac{12}{5}\\\frac{zx}{z+x}=\frac{24}{7}\end{cases}}\)
b)\(\hept{\begin{cases}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{cases}}\)
c)\(\hept{\begin{cases}\frac{xy}{x+y}=2-z\\\frac{yz}{y+z}=2-x\\\frac{zx}{z+x}=2-y\end{cases}}\)
giải hệ phương trình : \(\hept{\begin{cases}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}x+y+z=6\\\frac{xy+yz+zx}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=2\sqrt{2}\end{cases}}\)
em mới học lớp 6. Xin lỗi anh
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
giải hệ phương trình\(\hept{\begin{cases}x+xy+y=1\\y+yz+z=4\\z+zx+x=9\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}zx+xy=x^2+2\\xy+yz=y^2+3\\yz+xz=z^2+4\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\\\\\end{cases}x}+y+z=3\\
\sqrt{x}+\sqrt{y}+\sqrt{z}=xy+yz+zx\\
x,y,z>0\)
Áp dụng BĐT AM-GM ta có:
\(x^2+2\sqrt{x}=x^2+\sqrt{x}+\sqrt{x}\ge3\sqrt[3]{x^2\cdot\sqrt{x}\cdot\sqrt{x}}=3x\)
Tương tự ta có: \(\hept{\begin{cases}y^2+2\sqrt{y}\ge3y\\z^2+2\sqrt{z}\ge3z\end{cases}}\)
Cộng theo vế các BĐT trên ta được:\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\ge3\left(x+y+z\right)=\left(x+y+z\right)^2\). Suy ra
\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+xz\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+z=3\\x=y=z\end{cases}}\Rightarrow x=y=z=1\)
Vậy hệ pt có nghiệm là (x;y;z)=(1;1;1)
Giải hệ phương trình:
\(\hept{\begin{cases}xy+z^2=2\\yz+x^2=2\\zx+y^2=2\end{cases}}\)
\(\hept{\begin{cases}xy+z^2=2\left(1\right)\\yz+x^2=2\left(2\right)\\zx+y^2=2\left(3\right)\end{cases}}\)Lấy 1- 2 ta có \(-y\left(z-x\right)+z^2-x^2=0\Leftrightarrow-y\left(z-x\right)+\left(z+x\right)\left(z-x\right)=0\)
\(\Leftrightarrow\left(z-x\right)\left(z+x-y\right)=0\Leftrightarrow\orbr{\begin{cases}z=x\\y=x+z\end{cases}}\)
TH1: Nếu \(x=z\)thế vào 1 và 3 có \(\hept{\begin{cases}xy+x^2=2\\x^2+y^2=2\end{cases}}\)\(\Rightarrow y^2-xy=0\Leftrightarrow\left(y-x\right)y=0\Leftrightarrow\orbr{\begin{cases}y=0\\x=y\end{cases}}\)
Nếu \(y=x=z\Rightarrow2x^2=2\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)Nếu \(y=0\)\(\Rightarrow\hept{\begin{cases}x=z\\x^2=2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=z=\sqrt{2}\\x=z=-\sqrt{2}\end{cases}}\)TH2 :Nếu \(y=x+z\)thế vào 1 và 3 có :\(\hept{\begin{cases}\left(x+z\right)x+z^2=2\\xz+\left(z+x\right)^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+xz+z^2=2\\x^2+3xz+z^2=2\end{cases}}}\)trừ hai vế của phương trình \(2xz=0\Leftrightarrow\orbr{\begin{cases}z=0\\x=0\end{cases}}\)
Nếu \(x=0\Rightarrow y=z\Rightarrow z^2=2\Leftrightarrow\orbr{\begin{cases}y=z=\sqrt{2}\\y=z=-\sqrt{2}\end{cases}}\)Nếu \(z=0\Rightarrow y=x\Rightarrow y^2=2\Leftrightarrow\orbr{\begin{cases}x=y=\sqrt{2}\\x=y=-\sqrt{2}\end{cases}}\)Kết luân : nghiệm của hệ là \(\orbr{\begin{cases}\left(x,y,z\right)=\left(\sqrt{2},0,\sqrt{2}\right)\\\left(x,y,z\right)=\left(-\sqrt{2},0,-\sqrt{2}\right)\end{cases}}\)hoặc \(\orbr{\begin{cases}\left(x,y,z\right)=\left(0,\sqrt{2},\sqrt{2}\right)\\\left(x,y,z\right)=\left(0,-\sqrt{2},-\sqrt{2}\right)\end{cases}}\)hoặc \(\orbr{\begin{cases}\left(x,y,z\right)=\left(\sqrt{2},\sqrt{2},0\right)\\\left(x,y,z\right)=\left(-\sqrt{2},-\sqrt{2},0\right)\end{cases}}\)hoặc \(\orbr{\begin{cases}\left(x,y,z\right)=\left(1,1,1\right)\\\left(x,y,z\right)=\left(-1,-1,-1\right)\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{cases}}\)
bạn nghịch đảo lên sau đó đặt ẩn phụ là giải được