Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
๓เภђ ภوยץễภ ђảเ
Xem chi tiết
huynh van duong
Xem chi tiết
TRẦN ĐỨC VINH
9 tháng 5 2019 lúc 21:02

\(A=3+3^2+3^3+...+3^{2015}+3^{2016}=3+3^2\left(1+3+3^2+3^3+...+3^{2014}\right).\)   

Thấy ngay rằng: A chia hết cho 3 nhưng A không chia hết cho 9. Vậy A không phải là số chính phương. 

\(\)

Phạm Minh Hiếu ∞
Xem chi tiết
Lê Song Phương
27 tháng 10 2023 lúc 21:34

 Ta thấy \(2A=2+2^3+2^4+...+2^{2022}\)

\(\Rightarrow A=2A-A=2^{2022}+2-2^2-1\) \(=2^{2022}-3\)

 Ta có tính chất quan trọng sau: Một số chính phương lẻ khi chia cho 8 chỉ số thể dư 1. (*)

 Thật vậy, với mọi k tự nhiên thì \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\). Khi đó do \(4k\left(k+1\right)⋮8\) nên hiển nhiên (*) đúng.

 Thế nhưng, ta thấy \(2^{2022}-3\) chia 8 dư 5 nên mâu thuẫn. Vậy A không thể là số chính phương.

Ngô Trí Trường
Xem chi tiết
Hoàng Minh Hiển
3 tháng 6 2022 lúc 18:44

ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))

Hoàng Minh Hiển
3 tháng 6 2022 lúc 18:46

2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b

Ngô Trí Trường
Xem chi tiết
Ngô Trí Trường
Xem chi tiết
Ngô Trí Trường
Xem chi tiết
Nguyễn Hà Thảo Vy
15 tháng 12 2015 lúc 20:37

ai tick cho mik lên 250 điểm hỏi đáp với.

Mai Hoàn
Xem chi tiết
Nguyễn Minh Quang
14 tháng 1 2022 lúc 21:13

ta chứng minh \(A=n^2\)

thật vậy

với n=1 , thì \(A=1=1^2\) đúng

ta giả sử đẳng thức đúng tới k ,tức là : 

\(1+3+5+..+2k-1=k^2\)

Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)

vậy đẳng thức đúng với k+1

theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương

Khách vãng lai đã xóa
Nguyễn Lê Đoan Hằng
Xem chi tiết