Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Huyền
Xem chi tiết
Phan Nghĩa
16 tháng 10 2020 lúc 13:58

đáng nhẽ đề phải là \(x+y\ge1\)chứ nhỉ 

\(\frac{1}{x^3+y^3+xy}=\frac{1}{\left(x+y\right)\left(x^2+y^2+xy\right)+xy}\ge\frac{1}{\left(x+y\right)^2}\ge1\)

Vậy GTNN của \(\frac{1}{x^3+y^3+xy}\)bằng 1 đạt được khi \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Phan Nghĩa
16 tháng 10 2020 lúc 14:02

à dấu = mình sai rồi , bạn tìm lại nhé 

Khách vãng lai đã xóa
Inequalities
16 tháng 10 2020 lúc 17:45

x+y>= 1 thì \(\frac{1}{\left(x+y\right)^2}\le1\)

Khách vãng lai đã xóa
Anh Mai
Xem chi tiết
hatsune miku
Xem chi tiết
Bùi Đình Bảo
2 tháng 10 2017 lúc 23:07

min P=2,5 khi x=1, y= 2.

Thiên bình cute
Xem chi tiết
Bình Thành
25 tháng 9 2019 lúc 21:17

x+xy+y+1=9

(x+1)(y+1)=9

áp dụng bđt ab<=(a+b)^2/4

->9<=(x+y+2)^2/4 -> x+y >=4

....

Minh Khôi
Xem chi tiết
Anh Mai
Xem chi tiết
Anh Mai
Xem chi tiết
VN in my heart
Xem chi tiết
Thắng Nguyễn
29 tháng 6 2016 lúc 16:02

Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :

\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)

\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)

\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)

Thắng Nguyễn
29 tháng 6 2016 lúc 15:22

chờ tí tui lm cho

Nhâm Thị Ngọc Mai
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Phạm Hữu Nam chuyên Đại...
19 tháng 3 2020 lúc 18:46

Giờ bạn cần bài này nữa không 

Khách vãng lai đã xóa
Phạm Hữu Nam chuyên Đại...
24 tháng 3 2020 lúc 19:41

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm 

Khách vãng lai đã xóa