x+y=1 tìm giá trị nhỏ nhất \(\frac{1}{x^3+y^3+xy}\)
x+y=1 tìm giá trị nhỏ nhất \(\frac{1}{x^3+y^3+xy}\)
đáng nhẽ đề phải là \(x+y\ge1\)chứ nhỉ
\(\frac{1}{x^3+y^3+xy}=\frac{1}{\left(x+y\right)\left(x^2+y^2+xy\right)+xy}\ge\frac{1}{\left(x+y\right)^2}\ge1\)
Vậy GTNN của \(\frac{1}{x^3+y^3+xy}\)bằng 1 đạt được khi \(x=y=\frac{1}{2}\)
à dấu = mình sai rồi , bạn tìm lại nhé
x+y>= 1 thì \(\frac{1}{\left(x+y\right)^2}\le1\)
cho x, y là các số thực dương thoả mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3^{ }}=\frac{1}{xy}\)
Cho x,y > 0, xy=2. Tìm giá trị nhỏ nhất của
\(P=\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
cho các số thực dương x, y thỏa mãn x+xy+y =8 tìm giá trị nhỏ nhất của biểu thức \(x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....
1)cho a,b,c dương thỏa mãn abc=1
tìm giá trị nhỏ nhất của B=\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+a^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ca}\)
2) cho x,y,z dương
tìm giá trị nhỏ nhất của P=\(x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Cho x, y là các số thực dương thoả mãn x + y = 1.
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :
\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)
\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)
Tìm giá trị nhỏ nhất của bt:\(A=\frac{1}{x^2+y^2}+\frac{3}{xy}+2xy\)
Bài 1:Cho 1. Cho x, y, z dương thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức
\(P=2\left(x^2+y^2+z^2\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Bài 2:Cho hai số dương x, y thỏa mãn \(x+y\le2\) . Tìm giá trị nhỏ nhất của
\(C=\frac{1}{x^2+y^2}+\frac{7}{xy}+xy\)
Các bạn giải cho mình 1 bài là được rồi mà giải được cả 2 thì càng tốt
Giờ bạn cần bài này nữa không
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm