Cho tam giác ABC cân tại A. (O) tiếp xúc với AB,AC tại B và C. Trên cung BC nằm trong tam giác ABC lấy điểm M ( khác B,C ). I,H,K là hình chiếu của M trên BC,CA và AB. MB cắt IK tại P, MC cắt IH tại Q.
CM: PQ // BC
Cho tam giác ABC cân tại A, góc A < 90 độ, một cung tròn BC nằm trong tam giác ABC và tiếp xúc với AB, AC tại B và C. Trên cung BC lấy một điểm M rồi hạ đường vuông góc MI, MH, MK xuống các cạnh BC, CA, AB. Gọi P là giao điểm của MB và IK , Q là giao điểm của MC, IH.
a) CM tứ giác BIMK, CIMH nội tiếp
b) CM tia đối của tia MI là phân giác của góc HMK
c) CM tứ giác MPIQ nội tiếpCho tam giác ABC cân tại A, góc A < 90 độ, một cung tròn BC nằm trong tam giác ABC và tiếp xúc với AB, AC tại B và C. Trên cung BC lấy một điểm M rồi hạ đường vuông góc MI, MH, MK xuống các cạnh BC, CA, AB. Gọi P là giao điểm của MB và IK , Q là giao điểm của MC, IH.
a) CM tứ giác BIMK, CIMH nội tiếp
b) CM tia đối của tia MI là phân giác của góc HMK
Giúp mình câu b với ạ. Đừng copy trên mạng nha
Ta có BMIK nội tiếp
=> góc IMK = góc ABC
IMCH nội tiếp
=> góc IMH= góc ACB
Tam giác ABC cân tại A
=>góc ACB=góc ABC
Cho tam giác ABC cân tại A, góc BAC<90 độ, một cung tròn BC nằm trong tam giác ABC và tiếp xúc với AB,AC tại B và C. Trên cung BC lấy một điểm M rồi hạ đường vuông góc MI,MH,MK xuống các cạnh tương ứng BC,AC,BA. Gọi P là giao điểm của MB, IK và Q là giao điểm của MC, IH.
1. Chứng minh rằng các tứ giác BIMK,CIMH nội tiếp được
2. Chứng minh tia đối của tia MI là phân giác của góc HMK
3. Chứng minh tứ giác MPIQ nội tiếp được. Suy ra PQ//BC
4. Gọi (O1) là đường tròn đi qua M,P,K,(O2) là đường tròn đi qua M,Q,H; N là giao điểm thứ hai của (O1) và (O2) và D là trung điểm của BC. Chứng minh M, N, D thẳng hàng.
1 cung tròn BC nằm trong tam giác BAC và tiếp xúc với AB, AC ở B, C. Lấy M thuộc cung BC; kẻ MI, MH, MK vuông góc với BC, CA, AB. MB cắt IK tại P. MC cắt IH tại Q.
a. Cm: BIMK, CIMH nội tiếp trong đường tròn
b. Cm: MI^2 = MK.MH
c. Tia đối của tia MI là tia phân giác của góc HMK
d. Tứ giác MPIQ nội tiếp và PQ // BC
e. Gọi (O1) là đường tròn qua M, P, K; (O2) qua M, Q, H. Gọi D là trung điểm của BC. (O1) cắt (O2) tại điểm thứ hai là N. Cm: M, N, D thẳng hàng
: Cho tam gíac ABC cân tại A, Â<90 , một cung tròn BC nằm trong tam giác ABC và tiếp xúc với AB,AC tại B và C. Trên cung BC lấy một điểm M rồi hạ đường vuông góc MI,MH,MK xuống các cạnh tương ứng BC,AB,CA. Gọi P là giao điểm của MB, IK và Q là giao điểm của MC, IH.
a) Chứng minh rằng các tứ giác BIMK,CIMH nội tiếp được
b) Chứng minh tia đối của tia MI là phân giác của góc HMK
c) Chứng minh tứ giác MPIQ nội tiếp được. Suy ra PQ//BC
d) Gọi (O2) là đường tròn đi qua M,P,K,(O2) là đường tròn đi qua M,Q,H; N là giao điểm thứ hai của (O1) và (O2) và D là trung điểm của BC. Chứng minh M, N, D thẳng hàng.
Câu 1: Cho tam giác đều ABC, cạnh bằng 3cm. M là 1 điểm bất kì nằm trong tam giác. Qua M kẻ đương thẳng song song với AB, BC, AC. Chúng cắt BC, CA, AB lần lượt tại A', B', C'. Tính MA'+MB'+MC'
Câu 2: Cho tam giác vuông ABC vuông cân tại A, M là trung điểm của BC. Lấy điểm D bất kì trên cạnh BC, H và I lần lượt là hình chiếu của B, C xuống cạnh AD. Tính tỉ số BC^2/(BH^2+CI^2)
TRẢ LỜI HỘ NHA ^-^
Bài 1: Cho tam giác nhọn ABC nội tiếp đường tròn (O). Đường tròn (I) qua A và tiếp xúc với BC tại B. Đường tròn (K) qua A và tiếp xúc với BC tại C. Các đường tròn (I) và(K) cắt tại M. Đường thẳng AM cắt đường tròn (O) tại N. C/m: BMCN là hình bình hành
Bài 2: Cho tam giác đều ABC nội tiếp đường tròn (O). Trên cung nhỏ BC lấy điểm M và vẽ đường tròn (I) tiếp xúc trong với (O) tại M. Gọi giao điểm MA, MB, MC với (I) theo tứ tự D,E,F
a) C/m: tam giác DEF đều.
b) Từ A,B,C vẽ các tiếp tuyến với đường tròn (I) lần lượt là AP,BQ,CR( P,Q,R là tiếp điểm). C/m: AP=PQ+CR
Tam giác ABC , góc C bằng 90 độ , AC = 5cm , ab =13cm . a) tính BC và so sánh các góc của tam giác ABC . b) Trên tia đối CA lấy M sao cho CM = CA . chứng minh tam giác AMB cân . c) Gọi H là trung điểm của AB , MB cắt BC tại O , Tính OC . d) Tia AO cắt MB tại N , So sánh AM+HB với MB
Cho tam giác ABC cân tại A có góc BAC = 450, nội tiếp đường tròn (O;R). Tia AO cắt đường tròn (O;R) tại D khác A. Lấy điểm M trên cung nhỏ AB (M khác A, B). Dây MD cắt dây BC tại I. Trên tia đối của tia MC lấy điểm E sao cho ME = MB. Đường tròn tâm D bán kính DC cắt MC tại điểm thứ hai K. CM Tứ giác DCKI là tứ giác nội tiếp.