chứng minh rằng (n mũ 2+1).(n mũ 2+4) chia hết cho 5 với mọi n thuộc N
Làm nhanh
Chứng minh rằng 5 mũ n chia hết cho 4 với mọi n thuộc N
Bài 1: Cho A=3 + 3 mũ 2 + 3 mũ 3 + ... +3 mũ 2010.
a, Tìm c/s tận cùng của A.
b, Chứng tỏ 2A+ 3 là 1 lũy thừa của 3.
c,Tìm x thuộc N biết: 2A-3=3 mũ x.
d, CMR A chia hết cho 13.
Bài 2: Chứng minh rằng:
a, 942 mũ 60 - 351 mũ 37 chia hêt cho 5.
b ( n + 2009) . ( n+ 2010) chia hết cho 2 với mọi STN n.
Bài 4: Tìm n thuộc N biết:
a, ( n + 9) chia hết cho ( n + 5)
b, 2 mũ n - 3 hết mũ - 2 mũ n = 448
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Bài 3: Chứng minh rằng với mọi số tự nhiên n thì:
1) 3 mũ n+2 - 2n+2 - 3n - 2n chia hết cho 10 2) 3 mũ n+2 - 2 mũ n+4 + 3 mũ n + 2 mũ n chia hết cho 30
Bài 4: Chứng minh rằng: 3 mũ n+1 + 3 mũ n+2 + 3 mũ n+3 chia hết cho 13 với mọi số tự nhiên n.
Bài 5: Chứng minh rằng:
1) 2 + 2 mũ 2 + 2 mũ 3 + ...+ 2 mũ 60 chia hết cho 15 2) 1+ 3+ 3 mũ 2 + 3 mũ 3 + ...+ 3 mũ 119 chia hết cho 13
cho B = 1+4+4 mũ 2 +........ 4 mũ 99
a] tìm n thuộc n để 3B +1 =4 mũ n
b] chứng minh rằng B chia hết cho 5 ; chia hết cho 8
mk chỉ giúp phần a nha
B=1+ 4+42 +....+ 499
4B=4+ 42+43+...+4100
4B-B=4100-1
3B=4100-1
B= 1 + 4+4 MŨ 2+.....+4 MŨ 99
4B= 4+4 MŨ 2+4 MŨ 3+.....+4 MŨ 100
4B-B=4 MŨ 100- 1
3B=4 mũ 100-1
Ta có biếu thức3B+1=4 mũ n=4 mũ 100 -1+1=4 mũ n
Suy ra 4 mũ 100=4 mũ n
suy ran=100
a) 4B= 4+42+43+...+499+4100
B=1+4+42+43+...+499
3B=4100-1
->3B+1=4100 ->n=100
b) B=(1+4)+(42+43)+(44+45)+...+(498+499)
=5.1+5.42+5.44+...+5.498
=5(1+42+44+...+498) chia hết cho 5 (đpcm)
4; 42; 43;...; 499 đều là số chẵn, chỉ có 1 là số lẻ -> Tổng = B lẻ -> B không chia hết cho 8.
Bạn chép sai đề rồi thì phải!!!!
chứng minh rằng B = ( n mũ 2 - 2n + 1 ) mũ 3 chia hết cho ( n - 1 ) mũ 2 với mọi số nguyên n .
B = (n^2 - 2n + 1)^3
= [(n-1)^2]^3
= (n-1)^6 ⋮ (n - 1)^2
đpcm
\(B=\left(n^2-2n+1\right)^3=\left[\left(n-1\right)^2\right]^3=\left(n-1\right)^6\)
\(B\div\left(n-1\right)^2=\left(n-1\right)^6\div\left(n-1\right)^2=\left(n-1\right)^4\)
=> Đpcm
a)Chứng minh rằng 2002 mũ n nhân 2005 mũ n + 1 chia hết cho 1,5 và 10
b)6 mũ 1000 - 2 chia hết cho 5
Ai nhanh mình like cho,lời giải chi tiết nha mọi người
Chứng minh rằng: 3 mũ n+1 + 3 mũ n+2 + 3 mũ n+3 chia hết cho 13 với mọi số tự nhiên n.
\(3^{n+1}+3^{n+2}+3^{n+3}\)
\(=3^{n+1}\left(1+3+3^2\right)\)
\(=3^{n+1}.13⋮13\forall n\inℕ\)
Ta có : 3^n+1 + 3^n+2 + 3^n+3
<=>3^n+1(1+3+3^2)
<=>3^n+1 . 13
=>3^n+1 \(⋮\)13
Vậy 3^n+1 + 3^n+2 + 3^n+3 \(⋮\)13
chứng minh rằng với m,n thuộc z
câu số 1:n mũ 3 +11*n chia hết cho 6
câu số 2: m*n * (m mũ 2-n mũ 2) chia hết cho 6
cho n thuộc N , chứng minh rằng n mũ 2 cộng n cộng 1 không chia hết cho 4,không chia hết cho 5
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4