Tìm GTNN của biểu thức A=/2x-1/+5
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
Tìm GTNN của biểu thức :
A= 5- | 2x-1|
Ta có :
\(A=5-\left|2x-1\right|\)
Vì \(\left|2x-1\right|\ge0\)
\(\Rightarrow A\ge5\)
Vậy GTNN của \(A=5\)<=> \(x=\frac{1}{2}\)
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2
Tìm a) GTNN của biểu thức B=|2x+6|+2+2x
b) GTLN của biểu thức C=\(\frac{4-\left|x-y+1\right|}{5+\left|x+y+1\right|}\)
Tìm GTLN(GTNN) của biểu thức:
A = 2(2x+3)^2+5
A = 2(2x + 3)2 + 5
vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5
A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)
a.tìm giá trị lớn nhất của biểu thức:P=\(\sqrt{3x-5}+\sqrt{7-3x}\)
b.cho x>1, tìm GTNN của biểu thức: A=2x+\(\dfrac{9}{x-1}\)
\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)
\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)
\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)
tìm gtnn của biểu thức: A=|2x-2014|+|2x-1|
tìm GTNN của biểu thức A=(2x+5) tất cả mũ 4 +3
Lời giải:
$A=(2x+5)^4+3$
Ta thấy: $(2x+5)^4\geq 0$ với mọi $x$
$\Rightarrow A=(2x+5)^4+3\geq 0+3=3$
Vậy $A_{\min}=3$
Giá trị này đạt được khi $2x+5=0\Leftrightarrow x=\frac{-5}{2}$