Cho S = 5+52 + 53 +......+596
a, chung minh rang : S chia het cho 126
cho S= 5+5^2+5^3...+5^2006
a, tinh S
b,Chung minh rang S chia het cho 126
cho S=5+52+53+..........+52006
a,Tinh S
b,Chung minh S chia het cho 126
S = 5 + 52 + 53 + ......... + 52006
5S = 52 + 53 + 54 + .......... + 52007
5S - S = ( 52 + 53 + 54 + .......... + 52007) - ( 5 + 52 + 53 + ......... + 52006 )
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)
a)\(S=5+5^2+5^3+.....+5^{2006}\Rightarrow5S=5^2+5^3+5^4+\)\(....+5^{2007}\)
\(\Rightarrow5S-S=\left(5^2+5^3+5^4+....+5^{2007}\right)-\left(5+5^2+5^3+.....+5^{2006}\right)\)
\(\Rightarrow4S=5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)
\(a.S=5+5^2+5^3+......+5^{2006}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+.....+\left(5^{2001}+5^{2002}+.....+5^{2006}\right)\)
\(S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+......+5^{2001}\left(1+5+5^2+5^3+5^4+5^5\right)\)
\(S=5.3906+........+5^{2001}.3906\)
\(S=3906\left(5+....+5^{2001}\right)\)
\(b.S=3906\left(5+....+5^{2001}\right)\)
\(S=126.3\left(5+....+5^{2001}\right)\)
\(\Rightarrow\text{S chia hết cho 126}\)
1) Cho s= 3+3^2+....+3^1998. Chung minh rang S chia het cho 39
2)Chung minh rang 36^36 - 9^10 chia het cho 45
3)Hoi khi nao thi tong cua n so tu nhien lien tiep bat ki chia het cho n.
CAC BAN GIUP MINH DI MAI MINH NOP OI HUHU
chung minh rang :
s= 5+5^2+5^3+...........+5^99+5^100 chia het cho 30
S= 5+5^2+5^3+...........+5^99+5^100
=(5+52)+(53+54)+....+(599+5100)2
=1.(5+52)+(5.52+52.52)+...+(598.5+592.52)
=1.(5+52)+52.(5+52)+...+598.(5+52)
=1.30+52.30+...+598.30
=30.(1+52+...+598)
=>S chia het cho 30
chung minh rang 53 mu 103 cong 103 mu 53 chia het cho 39
chung minh rang
10^28 + 8 chia het cho 72
53! - 51! chia het cho 29
Ta viết 10^28=10000......0
Vì 10^28 chia hết cho 8 ; 8 chia hết cho 8 =>10^28+8 chia hết cho 8
Vì 10^28 có tổng các chữ số là 1 ; 8 có tổng các chữ số là 8 =>10^28+8 sẽ có tổng các chữ số là 9=>10^28+8 chia hết cho 9
Mà các số vừa chia hết cho 9;8 thì chia hết cho 72=>10^28+8 chia hết cho 72
chung minh rang S = 5 + 52 + 53 +...+ 5150 chia het cho 186
cho S = 1+3+32+ 33 + 34 + .......+ 399
a) Chung minh rang S chia het cho 4
b) chung minh rang S chia het cho 40
giup minh nhek
cho S = 1+3+32+ 33 + 34 + .......+ 399
Tổng S có tổng cộng 100 số hạng
S = 1+3+32+ 33 + 34 + .......+ 399
= (1+3) +(32+ 33) + (34 +35) .......(388+ 399 ) có 50 nhóm
= 4 + 32.(1+3)+34(1+3)+........+388(1+3)
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
b)
= (1+3 + 32+ 33) + (34 +35+36+37) .......(386+387+388+ 399 ) có 100:4 = 25 nhóm
= (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33)
= 40+ 34.40 .......386.40
= 40 ( 1 +34+ 38+....+386) chia hết cho 40
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
chung minh rang s=1+4+42+44+.........+42009chia het cho 5