Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Ngọc Minh
Xem chi tiết
mygirlfriendbon
Xem chi tiết
Hoàng Anh
Xem chi tiết
Nguyễn Hoàng Tiến
9 tháng 5 2016 lúc 13:11

Cau 1 so sanh 1-A va 1-B roi suy ra nhe.

nguyên thị phương anh
9 tháng 5 2016 lúc 13:21

A=2014/2013      B=2013/2012

A=1-2014/2013    B=1-2013/2012

A=-1/2013         B=-1/2012

=>-1/2013   >   -1/2012

VẬY A=2014/2013>B=2013/2012

Nghĩa Hiếu
Xem chi tiết

A = 32 + 102011 + 102012 + 102013 + 22014 

A = 4.8 + 103.(102008 + 102009  + 102010) + 23.22011

A = 4.8 + 23.53.(102008 + 102009 + 102010) + 23.22011

A = 4.8 + 8.53.(102008 + 102009 + 102010) + 8. 22011

A = 8.(4 + 53.(102008 + 102009 + 102010 + 22011) ⋮ 8 (đpcm)

 

Đào Quang Thái
Xem chi tiết
meme
13 tháng 9 2023 lúc 14:14

Để tìm dư của phép chia 2^2017 cho biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014, chúng ta có thể sử dụng định lý Fermat nhỏ.

Theo định lý Fermat nhỏ, nếu p là một số nguyên tố và a là một số tự nhiên không chia hết cho p, thì a^(p-1) ≡ 1 (mod p).

Trong trường hợp này, chúng ta có p = 2 và a = 2.

Ta biết rằng 2 không chia hết cho 2, vì vậy 2^(2-1) ≡ 1 (mod 2), nghĩa là 2^1 ≡ 1 (mod 2).

Do đó, ta có thể thấy rằng tất cả các mũ 2^k với k >= 1 đều có dư 1 khi chia cho 2.

Vì vậy, biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014 có tổng là 2014 và có dư 0 khi chia cho 2.

Do đó, dư của phép chia 2^2017 cho biểu thức này cũng là 0.

Trần Thị Ngọc Minh
Xem chi tiết
Trần Thị Ngọc Minh
8 tháng 8 2016 lúc 18:13

đây nè mấy nàng ơi. trả lời câu này nhé . làm ơn đi

đinh minh anh
Xem chi tiết
Trần Thúy Hà
Xem chi tiết
Mai Ngọc
29 tháng 12 2015 lúc 13:21

2+2^2+2^3+2^4+...+2^2014 chia hết cho 2 vì toàn số chẵn

2+2^2+2^3+2^4+...+2^2014

=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2013+2^2014)

=2(1+2)+2^3(1+2)+2^5(1+2)+...+2^2013(1+2)

=2.3+2^3.3+2^5.3+...+2^2013.3

=3(2+2^3+2^5+...+2^2013) chia hết cho 3

 

Bế Quốc An
Xem chi tiết
Đoàn Đức Hà
25 tháng 10 2021 lúc 23:43

\(3+3^2+3^3+...+3^{2012}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(=40\left(3+...+3^{2009}\right)⋮40\)

Khách vãng lai đã xóa
Bế Quốc An
26 tháng 10 2021 lúc 9:19

rrrrr

Khách vãng lai đã xóa