chứng minh rằng n^12 -n^8 n^4+1 chia hết cho 512 với n lẻ
chứng minh rằng: m12-m8-m4+1 chia hết cho 512 với mọi số tự nhiên lẻ n
Chứng minh rằng : n^12-n^8-n^4+1 chia hết cho 512.
Bạn xem lại đề. Nếu n chẵn thì
\(n^{12}-n^8-n^4+1\)
là số lẻ. Do đó không thể chia hết cho 512 được.
Chứng minh rằng với mọi n là số tự nhiên lẻ thì:
a/ \(n^3+3n^2-n-3\) chia hết cho 48
b/ \(n^{12}-n^8-n^4+1\) chia hết cho 512
1/
$A=n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)$
$=(n-1)(n+1)(n+3)$
Do $n$ lẻ nên đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$A=(2k+1-1)(2k+1+1)(2k+1+3)=2k(2k+2)(2k+4)$
$=8k(k+1)(k+2)$
Vì $k,k+1, k+2$ là 3 số tự nhiên liên tiếp nên trong đó có ít nhất 1 số chẵn, 1 số chia hết cho 3.
$\Rightarrow k(k+1)(k+2)\vdots 2, k(k+1)(k+2)\vdots 3$
$\Rightarrow k(k+1)(k+2)\vdots 6$ (do $(2,3)=1$)
$\Rightarrow A\vdots (8.6)$ hay $A\vdots 48$.
2/
$B=n^{12}-n^8-n^4+1=(n^{12}-n^8)-(n^4-1)$
$=n^8(n^4-1)-(n^4-1)=(n^8-1)(n^4-1)$
$=(n^4-1)(n^4+1)(n^4-1)$
Đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$(n^4-1)(n^4-1)=[(n-1)(n+1)(n^2+1)]^2$
$=[2k(2k+2)(4k^2+4k+2)]^2=[8k(k+1)(2k^2+2k+1)]^2$
Vì $k,k+1$ là 2 số tự nhiên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow 8k(k+1)\vdots 16$
$\Rightarrow (n^4-1)(n^4-1)=[8k(k+1)(2k^2+2k+1)]^2\vdots 16^2=256$
Mà $n^4+1\vdots 2$ do $n$ lẻ.
$\Rightarrow (n^4-1)(n^4-1)(n^4+1)\vdots (2.256)$
Hay $B\vdots 512$
Chứng minh với mọi n là số lẻ thì :
b, n3+3n2-n-3 chia hết cho 48
c, n12-n8-n4+1 chia hết cho 512
b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
CMR: n^12-n^8-n^4+1 chia hết cho 512 với mọi n lẻ
kham khảo ở đây nha
Câu hỏi của Trịnh Hoàng Đông Giang - Toán lớp 8 - Học toán với OnlineMath
vào thống kê hỏi đáp của mình có chữ màu xanh nhấn zô đó = sẽ ra
hc tốt ~:B~
Tham khảo câu hỏi tương tự:
https://olm.vn/hoi-dap/detail/85818524717.html
bn có thể tham khảo tại đây:
câu hỏi của Trịnh Hoàng Đông Giang - toán lớp 8 - Học toán với OnlineMath
hk tốt
CẦN GẤP!!
Chứng minh:
a) m3+20m chia hết ch 48 với m là số nguyên chẵn
b) n12-n8-n4+513 chia hết cho 512 với n là số nguyên lẻ
Ta có: A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512
a, Ta có m là số nguyên chẵn
=> m có dạng 2k
=> m3+20m=(2k)3+20.2k
=8k3+40k=8k(k2+5)
Cần chứng minh k(k2+5) chia hết cho 6
Nếu k chẵn => k(k2+5) chia hết cho 2
Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2
Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3
Nếu k chia 3 dư 1 hoặc dư 2 thì
k có dạng 3k+1 hoặc 3k+2
=> (3k+1)[(3k+1)2+5)]
=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3
=> k(k2+5) chia hết cho 3
Nếu k chia 3 dư 2
=> k có dạng 3k +2
=> k(k2+5)=(3k+2)[(3k+2)2+5]
=(3k+2)(9k2+12k+9)
Vì 9k2+12k +9 chia hết cho 3
=> k(k^2+5) chia hết cho 3
=> k(k2+5) chia hết cho 6
=> 8k(k2+5) chia hết cho 48
=> dpcm
CMR
n^12 - n^8 -n^4 +513 chia hết cho 512 với n lẻ
n12-n8-n4+513 = (n12-n8)-(n4-1)+512 = n8(n4-1)-(n4-1)+512 = (n4-1)(n8-1)+512 = (n4-1)2(n4+1)+512 = (n4-1)2(n4+1)+512 =
= (n-1)2(n+1)2(n2+1)2(n4+1)+512
Ta có: 512=29
Nhận thấy 512 chia hết cho 512
Xét: n=1 => (n-1)2(n+1)2(n2+1)2(n4+1)=0 => n12-n8-n4+513=512 chia hết cho 512
n>1, n lẻ => (n-1)2; (n+1)2; (n2+1)2 và (n4+1) là các số chẵn và trong đó có ít nhất 2 số chia hết cho 4
=> (n-1)2(n+1)2(n2+1)2(n4+1) là số có dạng: (2k)5(4n)2 = 25.24.k5.n5 = 512.a chia hết cho 512
=> (n-1)2(n+1)2(n2+1)2(n4+1)+512 chia hết cho 512
=> n12-n8-n4+513 Chia hết cho 512 với mọi n lẻ
CMR với mọi n lẻ thì
a. n^2 +4n +3 Chia hết cho 8
b. n^3+3n^2 - n-3chia hết cho 48
c. n^12 -n^8 -n^4 +1 chia hết cho 512
Chứng minh rằng với mọi n thuộc N :
a, n2 +4n +3 chia hết cho 8
b, n3+3n2-n-3 chia hết cho 48
c, n12-n8-n4+1chia hết cho 512
b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath