TIM GIA TRI DUONG NHO NHAT CUA:
\(A=\frac{1}{3,5-\left|x+5\right|}\)
TIM GIA TRI DUONG NHO NHAT CUA :
A =1/3,5-|x+5|
Cho x,y la cac so thuc duong. Tim gia tri nho nhat cua bieu thuc:
\(P=\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\)
Hình như đề sai rùi bạn ơi !
Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác
Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu
Mk nói có gì sai thì thông cảm nha !
đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà
Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)
\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)
\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)
\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow\)x=y
cho x;y;z duong thoa man xyz=1
tim gia tri nho nhat cua \(\frac{1}{x^2\left(y+z\right)}+\frac{1}{y^2\left(x+z\right)}+\frac{1}{z^2\left(x+y\right)}\)
tim gia tri nho nhat cua A= \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
cho a,b la cac so duong thoa man : a+b=1
Tim gia tri nho nhat cua bieu thuc: T= \(\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(T_{min}=\frac{2715}{8}\) tại \(a=b=\frac{1}{2}\)
\(T=\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(=\frac{19}{ab}+\frac{6}{a^2+b^2}+304\left(a^4+b^4+\frac{1}{16}+\frac{1}{16}\right)+48\left(a^4+\frac{1}{16}\right)+48\left(b^4+\frac{1}{16}\right)+1659\left(a^4+b^4\right)-44\)
\(\ge\frac{19}{ab}+\frac{6}{a^2+b^2}+304ab+24\left(a^2+b^2\right)+1659.\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}-44\)
\(=\left(\frac{19}{ab}+304ab\right)+\left(\frac{6}{a^2+b^2}+24\left(a^2+b^2\right)\right)+\frac{1307}{8}\)
\(\ge152+24+\frac{1307}{8}=\frac{2715}{8}\)
Tim gia tri nho nhat cua bieu thuc A:
A=\(\frac{x^2+2x+3}{\left(x+2\right)^2}\)
ĐK : \(x\ne-2\)
ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)
\(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\)
vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)
=> \(A>=\frac{2}{3}\)
dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)
hai so nguyen duong x,y co tong la 51
a tim gia tri lon nhat cua x.y
b tim gia tri nho nhat cua tich x,y, biet rang x va y deu lon hon 1
tim gia tri nho nhat cua bieu thuc P=\(\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) trong do x,y la cac so duong thoa man \(x^2+y^2=1\)
tim gia tri nho nhat cua bieu thuc
\(A=\frac{2015}{\left|x\right|-3}\) voi x nguyen