47. a) Chứng minh rằng : 14^14 – 1 chia hết cho 3 b) Chứng minh rằng : 2009^2009 – 1 chia hết cho 2008.
Bạn tham khảo
http://pitago.vn/question/a-chung-minh-rang-1414-1-chia-het-cho-3bchung-minh-rang-58984.html
Trường học Toán Pitago – Hướng dẫn Giải toán – Hỏi toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
giải luôn hộ mình
chứng minh 20092009 - 2009 chia hết cho 10
Hiệu chia hết cho 10 => hiệu tần cùng là 0
Ta có: (....9)chẵn = (....1) ; (.....9)lẻ = (.....9)
2009 lẻ => 20092009 - 2009 = (.........9) -2009 = (.....0)
=> Hiệu chia hết cho 10
CHỨNG MINH rằng 2009 mũ 2009 chia hết cho 2008
Chứng minh rằng 3000 mũ 2009 chia hết cho 2009
chứng minh: 2009^2011+2011^2009 chia hết cho 2010
Chứng minh rằng:
chia hết cho 2010
+ 1) + ( – 1)
= (2009 + 1)( - …) + (2011 – 1)( + …)
= 2010( + …) chia hết cho 2010
Chứng minh rằng 3000 mũ 2009 trừ 1 chia hết cho 2009
ta có: \(3000^{2009}-1=\left(3000-1\right).\left(3000^{2008}+3000^{2007}+...+3000+1\right)\)
\(=2009.\left(3000^{2008}+3000^{2007}+...+3000+1\right)⋮2009\)
\(\Rightarrow3000^{2009}-1⋮2009\left(đpcm\right)\)
Chứng minh A = (2009+20092+20093+...+200910) chia hết cho 2010
A=(2009+2009^2)+(2009^3+2009^4)+...+(2009^9+2009^10)
A=[2009.(1+2009)]+[2009^3.(1+2009)]+....+[2009^9.(1+2009)]
A=2009.2010+2009^3.2010+...+2009^9.2010
A=2010(2009+2009^3+2009^5+......+2009^9) chia het cho 2010
Ta có :
\(A=2009+2009^2+2009^3+2009^4+....+2009^{10}\)
Tổng A có số số hạng là :
( 10 - 1 ) : 1 + 1 = 10 ( số hạng )
Vì \(10⋮2\)nên khi ta nhóm 2 số liên tiếp lại thành một căp thì không thừa số nào cả
\(\Rightarrow A=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+....+\left(2009^9+2009^{10}\right)\)
\(\Rightarrow A=2009.\left(1+2009\right)+2009^3.\left(1+2009\right)+....+2009^9.\left(1+2009\right)\)
\(\Rightarrow A=2009.2010+2009^3.2010+....+2009^9.2010\)
\(\Rightarrow A=2010.\left(2009+2009^3+....+2009^9\right)\)
Vì \(2009+2009^3+....+2009^9\inℤ\)nên \(2010.\left(2009+2009^3+....+2009^9\right)\inℤ\)
Vì \(2010⋮2010\)nên \(A⋮2010\)
Vậy \(A=2009+2009^2+2009^3+....+2009^{10}⋮2010\left(ĐPCM\right)\)
Cho K= 2009+20092+20093+...+200910
Chứng minh K chia hết cho 2010
K = (2009 + 20092 + 20093 + 20094 + .... + 200910)
K = [(2009 + 20092) + (20093 + 20094) + ... + (20099 + 200910)]
K = [4038090 + 20092(2009 + 20092) + ... + 20098(2009 + 20092)]
K = [4038090 + 20092.4038090 ... + 20098. 4038090] ⋮ 2010
(4038090 ⋮ 2010)
=> K ⋮ 2010 (đpcm)
Bạn vào đây nha:
Câu hỏi của Sakuraba Laura
Chúc bạn học giỏi!
Ý mik là vào:
Câu hỏi của Sakuraba Laura
https://olm.vn/hoi-dap/question/1163833.html
chứng minh 20092011+20112009 chia hết cho 2010
Sử dụng phương pháp đồng dư thức hãy chứng minh:
a) 1414 chia hết cho 3.
b) 20092009 chia hết cho 2008.