Cho tam giác ABC có D là trung điểm của AB, DE//DC, E thuộc AC
CMR: E là trung điểm của AC.
Cho tam giác ABC có D là trung điểm của AB, DE//DC, E thuộc AC
CMR: E là trung điểm của AC.
P/s: DE // BC
Dễ thôi
Nó là hệ quả của tính chất đường trung bình của tam giác.
Ta có: Trên tia đối tia ED lấy điểm G sao cho DE = EG
Xét 2 tam giác AED và CEG bằng nhau là ra thôi
Cho Tam giác ABC,D là trung điểm đoạn thẳng AB,DE song song với BC(E thuộc AC)
CMR: E là trung điểm của AC
AD = DB
DE // BC
⇒ E là trung điểm của AC (đpcm)
Vì một đường thẳng đi qua trung điểm của một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba
Cho tam giác ABC, D thuộc AB, E thuộc AC sao cho AD/AB=CE/CA. M là trung điểm DE. CMR M nằm trên đường trung bình của tam giác ABC
nhìn là bt đề sai liền luôn e ạ
AD/DB thì phải kèm AC/EC ms ra DE song song BC theo đl ta-lét ms cm bài đc á
Cho tam giác ABC, D thuộc AB, E thuộc AC sao cho AD/AB=CE/CA. M là trung điểm DE. CMR M nằm trên đường trung bình của tam giác ABC
vì AD=DB , AE=EC (gt) suy ra ED là ĐTB của tam giác ABC
MK : M là trung điểm của DE
Suy ra M nằm trên đg trung bình của tam giác ABC
Cho tam giác ABC có D là trung điểm của bc .qua d kẻ de song song với ac(e thuộc ab)
Chứng minh E là trung điểm AB .Từ đó suy ra AC =2DE
Vì D là trung điểm BC mà DE//AC nên E là trung điểm AB
Do đó DE là đường trung bình tam giác ABC
Vậy \(DE=\dfrac{1}{2}AC\) hay \(AC=2DE\)
Bài 7. Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a)CMR: AB = DC và AB // DC. b) CMR: ABC = CDA từ đó suy ra 2 BC AM . c)Trên tia đối của tia AC lấy điểm E soa cho AE = AC. CMR: BE // AM. d) Tìm điều kiện của tam giác ABC để 2 BC AC . e)Gọi O là trung điểm của AB. CMR: Ba điểm E, O, D thẳng hàng
a)
+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :
AM = DM (gt)
góc AMB = góc DMC ( đối đỉnh )
BM = CM (gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )
=> AB = DC ( hai canh tương ứng )
+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)
=> góc ABM = góc DCM ( hai góc tương ứng )
Mà hai góc này ở vị trí sole trong
=> AB // DC
b) Ta có : AB // CD (cmt)
AB \(\perp\) AC (gt)
=> DC \(\perp\)AC
Xét \(\Delta\)ABC và \(\Delta\)CDA có :
AB = CD (cmt)
góc BAC = góc DCA ( = 90 độ )
AC chung
=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )
=> BC = DA ( hai cạnh tương ứng )
Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)
c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :
AB chung
góc BAE = góc BAC ( = 90 độ )
AE = AC (gt)
=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )
=> BE = BC và góc BEA = góc BCA ( hai góc tương ứng ) (1)
Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)
=> \(\Delta\)AMC cân tại M
=> góc MAC = góc MCA
hay góc MAC = góc BCA (2)
Từ (1) và (2) => góc MAC = góc BEC
Mà hai góc này ở vị trí đồng vị
=> AM // BE (đpcm)
d) Câu này mình không hiểu đề lắm !!
Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.
e) Ta có : BE // AM
=> BE // AD
=> góc EBO = góc DAO
Xét \(\Delta\)EBO và \(\Delta\)DAO có :
BE = AD ( = BC )
góc EBO = góc DAO (cmt)
OB = OA (gt)
=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )
=> góc EOB = góc DOA ( hai góc tương ứng )
Mà : góc EOB + góc EOA = 180 độ
=> góc DOA + góc EOA = 180 độ
hay : góc EOD = 180 độ
=> Ba điểm E, O, D thẳng hàng (đpcm)
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC. D là trung điểm của AB, E là trung điểm của AC. Vẽ điểm F sao cho E là trung điểm của DF
CMR a) DE//BC
b) DE=1/2 BC
Tớ bik làm nè
thề luôn nhưng tick tớ 5 cái đã rồi tớ làm cho
bạn giúp tớ giải đi tối nay tớ phải nộp rồi T^T
Cho tam giác ABC có AB < AC. Vẽ phân giác AD của tam giác ABC ( D thuộc BC ). trên AC lấy điểm E sao cho AE=AB
a) CM: tam giác ADB=tam giác ADE
b) CM: AD là trung trực của BC
c) Gọi F là giao điểm của AB và DE. CMR: góc DBF = góc DEC và tam giác BFD = tam giác ECD
a, Xét Δ ADB và Δ ADE có:
AD chung
góc BAD = góc EAD
AB = AE
⇛Δ ADB =Δ ADE(c-g-c)
cho tam giác ABC có D , E lần lượt thuộc cạnh AB , AC sao cho DE // BC Trung tuyến AM của tam giác ABC cắt DE ở N . CM N là trung điểm của DE
vì DE // BC
=> DN // BM
VÀ EN // MC
=> DN/BM = EN/CM = AN/AM
=> DN = CN