Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hạ
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
Nguyễn Thị Ngọc Thơ
30 tháng 7 2018 lúc 14:22

a,Ta có: \(2A=4x^2+4xy+2y^2-4x+4y+4\)

\(=4x^2+2x\left(y-2\right)+\left(y-2\right)^2+y^2+8y+16-20\)

\(=\left(2x+y-2\right)^2+\left(y+4\right)^2-20\)

Vì \(\left\{{}\begin{matrix}\left(2x+y-2\right)^2\ge0\\\left(y+4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow2A\ge-20\Rightarrow A\ge-10\)

Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-4\end{matrix}\right.\)

Vậy ....

Nguyễn Thị Ngọc Thơ
30 tháng 7 2018 lúc 14:36

c,Ta có:\(4C=4x^2+4xy+4y^2-12x-12y\)

\(=4x^2+2.2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+4y^2-12y\)

\(=\left(2x+y-3\right)^2+3\left(y^2-2y+1\right)-12\)

\(=\left(2x+y-3\right)^2+3\left(y-1\right)^2-12\)

Vì \(\left\{{}\begin{matrix}\left(2x+y-3\right)^2\ge0\\3\left(y-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow4C\ge-12\Rightarrow C\ge-3\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=1\)

Vậy ...

Nguyễn Thị Ngọc Thơ
30 tháng 7 2018 lúc 14:47

a,Ta có:\(B=x^4-x^3y+y^4-xy^3+x^2y^2-8xy+16+184\)

\(=x\left(x^3-y^3\right)-y\left(x^3-y^3\right)+\left(xy-4\right)^2+184\)

\(=\left(x-y\right)^2\left(x^2+xy+y^2\right)+\left(xy-4\right)^2+184\)

\(=\left(x-y\right)^2\left[\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3y^2}{4}\right]+\left(xy-4\right)^2+184\)

Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left[\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3y^2}{4}\right]\ge0\\\left(xy-4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow B\ge184\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=2\)

Vậy ...

Ái Kiều
Xem chi tiết
ffcs
Xem chi tiết
ffcs
Xem chi tiết
HP 7a2TT
Xem chi tiết
KietKiet
2 tháng 8 2021 lúc 13:56

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

KietKiet
2 tháng 8 2021 lúc 14:07

KietKiet
2 tháng 8 2021 lúc 14:18

Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Hồ Quốc Đạt
6 tháng 4 2017 lúc 11:47

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

Hồ Quốc Đạt
6 tháng 4 2017 lúc 11:49

Mà bài này hình như học ở lớp 7 rồi!lolang

Nguyễn Phương Thảo
Xem chi tiết