Cmr với mọi số nguyên dương n thì :
\(7^{n+2}+8^{2n+1}⋮57\)
dùng phương pháp qui nạp
cmr mọi số nguyên dương n thì:
a. 3^(3n+1)+40n-67 chia hết cho 64
b.3^(3n+2)+5*2^(3n+1) chia hết cho 19
c.2^(n+2)*3^n+5n-4 chia hết cho 25
d. 7^(n+2)+8^(2n+1) chia hết cho 57
CMR với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2^n
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
CMR: Với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2n
với n = 1 có : ( 1 + 1 ) chia hết cho 2
giả sử, với n = k thì ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2k
cần chứng minh đúng với n = k + 1
tức là ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) \(⋮\)2k+1
Ta có : ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) = ( k + 2 ) ( k + 3 ) ... 2k .2 ( k + 1 )
= 2 ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2.2k = 2k+1
vậy ta có đpcm
chứng minh rằng với mọi số nguyên dương n thì 7^n+2+8^2n+1 chia hết cho 19
ai giúp mình với
cmr: với mọi số nguyên dương n thì
n^4+2n^3+2n^2+2n+1 không thể là một số chính phương
Cho M=2n+3/n+1. CMR: với mọi số nguyên dương n thì M tối giản.
Gọi ước chung của 2n+3;n+1 là d
=>2n+3 chia hết cho d và n+1 chia hết cho d
=>2n+3 chia hết cho d và 2.(2n+1) chia hết cho d
=>2n+3 chia hết cho d và 2n+2 chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
=>2n+3-2n-2 chia hết cho d
=>(2n-2n)+(3-2) chia hết cho d
=>1 chia hết cho d
=>d thuộc tập hợp 1;-1
=>2n+3 và n+1 có ước chung là 1 và -1
Vậy với mọi số nguyên dương n thì 2n+3/n+1 là phân số tối giản
Nếu thấy hay thì *** và kết bạn với mik nha !!!
gọi \(d\)là \(ƯC\left(2n+3;n+1\right)\)
\(\Rightarrow2n+3⋮d\)
\(\Rightarrow n+1⋮d\Rightarrow2.\left(n+1\right)⋮d\Rightarrow2n+2⋮d\)
\(\Rightarrow\left[\left(2n+3\right)-\left(2n+2\right)\right]⋮d\)
\(\Rightarrow\left[2n+3-2n-2\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\RightarrowƯ\left(1\right)=1;-1\)
\(\Rightarrow2n+3;2n+2\)nguyên tố cùng nhau
vậy \(M=\frac{2n+3}{n-1}\)tối giản
chứng minh phân số n^7+2n^2+n+2/n^8+n^2+2n+2 không tối giản với mọi số nguyên dương n