Tìm \(a\inℤ\)để:
\(\frac{a^2-3a-5}{a-2}\inℤ\)
Cảm ơn
Tìm \(a\inℤ\)để:
a) \(\frac{6}{2a+1}\inℤ\)
b) \(\frac{4a-3}{5a-1}\inℤ\)
c) \(\frac{a^2+3}{a-1}\inℤ\)
Chịu khó làm cả 3 câu giúp tôi nhé, cảm ơn!
a) Để \(\frac{6}{2a+1}\inℤ\)thì \(6⋮2a+1\)
\(\Rightarrow2a+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Vì \(a\inℤ\)\(\Rightarrow2a+1\)là số lẻ
\(\Rightarrow\)\(2a+1\)là ước lẻ của 6
\(\Rightarrow2a+1\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow2a\in\left\{-4;-2;0;2\right\}\)
\(\Rightarrow a\in\left\{-2;-1;0;1\right\}\)
Vậy \(a\in\left\{-2;-1;0;1\right\}\)
b) Để \(\frac{4a-3}{5a-1}\inℤ\)thì \(4a-3⋮5a-1\)\(\Rightarrow5.\left(4a-3\right)⋮5a-1\)
Ta có: \(5\left(4a-3\right)=20a-15=20a-4-11=4\left(5a-1\right)-11\)
Vì \(4.\left(5a-1\right)⋮5a-1\)\(\Rightarrow\)Để \(4a-3⋮5a-1\)thì \(11⋮5a-1\)
\(\Rightarrow5a-1\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Leftrightarrow5a\in\left\{-10;0;2;12\right\}\)\(\Leftrightarrow a\in\left\{-2;0;\frac{2}{5};\frac{12}{5}\right\}\)
mà \(a\inℤ\)\(\Rightarrow a\in\left\{-2;0\right\}\)
Vậy \(a\in\left\{-2;0\right\}\)
c) \(\frac{a^2+3}{a-1}=\frac{a^2-1+4}{a-1}=\frac{\left(a-1\right)\left(a+1\right)+4}{a-1}=\left(a+1\right)+\frac{4}{a-1}\)
Vì \(a\inℤ\)\(\Rightarrow a+1\inℤ\)
\(\Rightarrow\)Để \(\frac{a^2+3}{a-1}\inℤ\)thì \(\frac{4}{a-1}\inℤ\)
\(\Rightarrow4⋮a-1\)\(\Rightarrow a-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow a\in\left\{-3;-1;0;2;3;5\right\}\)
Vậy \(a\in\left\{-3;-1;0;2;3;5\right\}\)
Tìm \(a,b\inℤ\)để:
\(\frac{1}{a}+\frac{1}{b}=\frac{4}{ab}-1\)
Giúp mk vs
Cảm ơn ạ!!
Ta có :\(\frac{1}{a}+\frac{1}{b}=\frac{4}{ab}-1\)
\(\Rightarrow\frac{a+b}{ab}=\frac{4}{ab}-1\)
=> \(\frac{a+b-4}{ab}=-1\)
=> a + b - 4 = -ab
=> a + b - 4 + ab = 0
=> a(b + 1) + b + 1 - 5 = 0
=> (a + 1)(b + 1) = 5
Vì \(a;b\inℤ\Rightarrow\hept{\begin{cases}a+1\inℤ\\b+1\inℤ\end{cases}}\)
Khi đó 5 = 1.5 = (-1).(-5)
Lập bảng xét các trường hợp
a + 1 | 1 | 5 | -1 | -5 |
b + 1 | 5 | 1 | -5 | -1 |
a | 0(loại) | 4 | -2 | -6 |
b | 4 | 0(loại) | -6 | -2 |
Vậy các cặp (a;b) nguyên thỏa mãn là (-6 ; -2) ; (-2 ; -6)
\(\frac{1}{a}+\frac{1}{b}=\frac{4}{ab}-1\)( ĐKXĐ : \(a,b\ne0\)) ( Bạn Xyz nhớ bổ sung thêm ĐKXĐ ạ )
\(\Leftrightarrow\frac{b}{ab}+\frac{a}{ab}=\frac{4}{ab}-\frac{ab}{ab}\)
\(\Leftrightarrow\frac{b}{ab}+\frac{a}{ab}-\frac{4}{ab}+\frac{ab}{ab}=0\)
\(\Leftrightarrow\frac{b+a-4+ab}{ab}=0\)
\(\Leftrightarrow b+a-4+ab=0\)
\(\Leftrightarrow b+a-5+1+ab=0\)
\(\Leftrightarrow a\left(b+1\right)+1\left(b+1\right)=5\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)=5\)
Ta có bảng sau :
a+1 | 1 | -1 | 5 | -5 |
b+1 | 5 | -5 | 1 | -1 |
a | 0 | -2 | 4 | -6 |
b | 4 | -6 | 0 | -2 |
Theo ĐKXĐ => Các cặp ( x; y ) thỏa mãn là : ( -2 ; -6 ) ; ( -6 ; -2 )
Cho biểu thức \(A=\frac{15}{n-2}\left(n\inℤ\right)\)
a,Tìm điều kiện để a là phân số
b,Tìm \(n\in N\)để \(A\inℤ\)
C, tÌM \(n\inℤ\)để a là phân số tối giản
a) \(n-2\ne0\Leftrightarrow n\ne2\)
b) \(\frac{15}{n-2}\in Z\) khi \(n-2\inƯ\left(15\right)\)
\(\Leftrightarrow n-2\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
đến đây tự lập bảng rồi làm
a, n-2 khác 0 nên n khác 2
b, n-2 là ước của 15 vậy n-2 = { +-1;+-3;+-5;+-15} tương ứng ta có
n-2 = -1 => n=1 Tm
n-2 =1 => n=3 Tm
n-2=3 => n= 5 Tm
tương tự tìm các giá trị còn lại nhé
ks cho mình nhé
a ) Để A là phân số
=> n - 2 khác 0
=> n khác 2
Vậy n khác 2 thì A là phân số
b ) Để A thuộc Z
=> 15 \(⋮\)n - 2
=> n - 2 thuộc Ư ( 15 ) = { - 15 ; - 5 ; - 3 ; -1 ; 1 ; 3 ; 5 ; 15 }
=> n thuộc { - 13 ; - 3 ; - 1 ; 1 ; 3 ; 5 ; 7 ; 17 } mà n thuộc N
=> n thuộc { 1 ; 3 ; 5 ; 7 ; 17 }
Giúp với, mai thi rồi!
Cho : \(a+b\inℤ\); \(a^2+b^2\inℤ\)và \(a^4+b^4\inℤ\). Chứng minh rằng: \(a^3+b^3\inℤ\)
Monh thầy cô và các CTV giúp đỡ ạ! Em cảm ơn trước!
Chứng minh:
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
Ta có: \(a+b\in Z\)
và \(a^2+b^2=\left(a+b\right)^2-2ab\in Z\Rightarrow2ab\in Z\)
\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\in Z\Rightarrow2a^2b^2\in Z\)
Đặt 2ab=k , k thuộc Z => \(4a^2b^2=k^2\Rightarrow2a^2b^2=\frac{k^2}{2}\in Z\Rightarrow\frac{k}{2}\in Z\)=> ab thuộc Z
=> \(a^3+b^3\in Z\)
Em chưa hiểu chỗ này: \(\frac{k^2}{2}\inℤ\Rightarrow\frac{k}{2}\inℤ\)
Cách hiểu 1: k2 chia hết cho 2 => k^2 là số chẵn => k là số chẵn=> k chia hết cho 2=> k/2 thuộc Z
Cách hiểu khác: k2 chia hết cho 2. Giả sử k không chia hết cho 2. k có dạng 2m+1( m thuộc Z)
=> k2 =4m2+4m+1 không chia hết cho 2 vô lí
=> k phải chia hết cho 2=> k/2 thuộc Z
tìm các số nguyên x (x \(\inℤ\)) để:
a)M=\(\frac{x+3}{2}\)\(\inℤ\)
b)N=\(\frac{7}{x-1}\inℤ\)
c)P=\(\frac{x-1}{x+1}\inℤ\)
Giúp mik nhé.Thanks các bạn.
a) Ta có:
Để M = \(\frac{x+3}{2}\)\(\in\)Z <=> \(x+3⋮2\) <=> \(x+3\in\)B(2) = {0; 2; 4; ....}
<=> \(x\in\){-3; -1; 1; ....}
b) Để N = \(\frac{7}{x-1}\)\(\in\)Z <=> \(7⋮x-1\) <=> \(x-1\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng :
x - 1 | 1 | -1 | 7 | -7 |
x | 2 | 0 | 8 | -6 |
Vậy ...
c) Ta có: P = \(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để P \(\in\)Z <=> \(2⋮x+1\) <=> \(x+1\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng:
x + 1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy ...
để M nguyên thì \(\frac{x+3}{2}\) nguyên
=> (x+3) \(\in\)Ư(2)={-2:-1:1:2}
lập bảng ra tìm x nha bn ~!!
mấy ý kia tương tự !
a) \(M=\frac{x+3}{2}\in Z\)
=> x+3 chia hết cho 2
=> x+3 thuộc Ư(2)={-1,-2,1,2}
=> x thuộc {-4,-5,-2,-1}
b) \(N=\frac{7}{x-1}\in Z\)
=> x-1 thuộc Ư(7)={-1,-7,1,7}
=> x thuộc {0,-6,2,8}
Tìm \(x\inℤ\)để \(A\inℤ\)
\(A=\frac{x^2}{x-2}\)(đkxđ: \(x\ne0;x\ne2\))
Đkxđ : \(x\ne2\)
\(A=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{4}{x-2}\)
\(=x+2+\frac{4}{x-2}\)
Để \(A\in Z\Rightarrow\frac{4}{x-2}\in Z\)
\(\Rightarrow x-2\inƯ_4\)
Mà \(Ư_4=\left\{1,-1,2,-2,4,-4\right\}\)
\(\Rightarrow....\)
Xét 6 trường hợp tìm ra x nha.
Để A là số nguyên thì \(x^2⋮x-2\)(1)
\(x-2⋮x-2\)\(\Rightarrow x^2-4x+4⋮x-2\)(2)
Trừ vế (1) cho (2) thì \(4x-4⋮x-2\)(3)
\(x-2⋮x-2\Rightarrow4x-8⋮x-2\)(4)
Trừ (3) cho (4) thì \(4⋮x-2\)
Vậy x-2 thuộc Ư(4)
.............
Ta có: \(A=\frac{x^2}{x-2}\left(ĐKXĐ:x\ne2\right)\)
\(\Rightarrow A=\frac{x\left(x-2\right)+2x}{x-2}\)
\(\Rightarrow A=x+\frac{2x}{x-2}\)
Vì \(x\inℤ\) nên để \(A\inℤ\) thì \(\frac{2x}{x-2}\in Z\)
\(\Leftrightarrow2x⋮\left(x-2\right)\)
\(\Leftrightarrow\left[2\left(x-2\right)+4\right]⋮\left(x-2\right)\)
Vì \(\left[2\left(x-2\right)\right]⋮\left(x-2\right)\) nên \(4⋮\left(x-2\right)\)
\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng:
\(x-2\) | \(1\) | \(2\) | \(4\) | \(-2\) | \(-1\) | \(-4\) |
\(x\) | \(3\) | \(4\) | \(6\) | \(0\) | \(1\) | \(-2\) |
Vậy \(x\in\left\{3;4;6;0;1;-2\right\}\)
Tìm a , b ,c ,d \(\inℤ^+\)biết \(a^3+3a^2+5=5^b;a+c=5^c\)
c1 :
Ta có : a^3 + 3a^2 + 5 = 5^b
=> a^2(a + 3 ) + 5 = 5^b
=> a^2 . 5^c + 5 = 5^b
=> 5^b > 5^c => b > c
ta lại có : a^2(a + 3 ) + 5 = 5^b
mà 5^b chia hết cho 5^c
=> a^2(a + 3 ) + 5 chia hết cho 5^c hay a^2(a + 3 ) + 5 chia hết cho a +3
Vì a^2( a+ 3 ) chia hết cho a + 3 => 5 chia hết cho a + 3 => a +3 \(\inƯ\left(5\right)\Rightarrow a+3\in\left\{\pm1;\pm5\right\}\)
Do a thuộc Z+ => a + 3 \(\ge4\)=> a + 3 = 5 => a = 2 => c = 1 => b = 2
c2 : Tương tự c1 :
Ta có : a^2 . 5^c + 5 = 5^b
=> 5 ( a^2 . 5^c + 5 ) = 5^b . 5
=> a^2 . 5^c+1 + 25 = 5^b+1 => a^2 . 5^c+1 = 5^b+1 - 25
Do b thuộc Z+ => b + 1 \(\ge2\Rightarrow5^{b+1}=\left(...25\right)\)
=> a^2 . 5^c+1 = ( ....00 )
Vì 5^c+1 = ( ....25 ) => a^2 = ( ...04 ) => a = ...02( 1 )
mặt khác : ( a + 3 = 5^c )
Nếu c = 1 => a + 3 = 5 => a = 2
c > 1 => 5^c = ( ....25) => a = ( ....22) (2)
(1) và (2) trái nhau => a = 2 thoản mãn với (1)
=> 5^c = 5 => c = 1
=> b = 2
Tìm x thuộc số nguyên để:
a)\(\frac{1-x}{x+4}\inℤ\)
b) \(\frac{11-2x}{x-5}\inℤ\)
c) \(\frac{x+1}{2x+1}\inℤ\)
giúp mik với,tks
a) \(\frac{1-x}{x+4}=\frac{5-4-x}{x+4}=\frac{5}{x+4}-1\inℤ\Leftrightarrow\frac{5}{x+4}\inℤ\)
mà \(x\inℤ\Rightarrow x+4\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Leftrightarrow x\in\left\{-9,-5,-3,1\right\}\)
b) \(\frac{11-2x}{x-5}=\frac{1+10-2x}{x-5}=\frac{1}{x-5}-2\inℤ\Leftrightarrow\frac{1}{x-5}\inℤ\)
mà \(x\inℤ\Rightarrow x-5\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{4,6\right\}\)
c) \(\frac{x+1}{2x+1}\inℤ\Rightarrow\frac{2\left(x+1\right)}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)
mà \(x\inℤ\Rightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{-1,0\right\}\).
Thử lại đều thỏa mãn.
Cho \(A=\frac{2x-3}{x+2}\)
a) Tính giá trị của A khi x=-1; x=3; x \(\frac{3}{2}\)
b) Tìm \(n\inℤ\)để \(A\inℤ\)