Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thu Thảo
Xem chi tiết
Hoa Thiên Cốt
Xem chi tiết
yeulannhieulam
Xem chi tiết
yeulannhieulam
19 tháng 2 2020 lúc 15:07

Ai trả lời giúp mình với mình đang cần gấp

Khách vãng lai đã xóa
nameless
19 tháng 2 2020 lúc 15:38

a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
 Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
    Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
      góc CBD + góc ABD = góc ABC
      góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
      BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9   = 25
=> BD2         = 25 - 9
=> BD2         = 16
=> BD2         = \(\sqrt{14}\)   
=> BD           = 4cm
Vậy a)... b)... c)... d)...

Khách vãng lai đã xóa

a/ Xét t/g vuông: t/g ABD và t/g ACE có:

AB = AC (gt)

Aˆ:chungA^:chung

=> t/g ABD = t/g ACE (cạnh huyền-góc nhọn)

=> BD = CE

b/ Vì AB = AC => t/g ABC cân tại A

=> ABCˆ=ACBˆABC^=ACB^

Xét 2 t/g vuông: t/g BEC và t/g CDB có:

BD = CE (ý a)

ABCˆ=ACBˆ(cmt)ABC^=ACB^(cmt)

=> t/g BEC = t/g CDB (cạnh góc vuông - góc nhọn kề)

=> BE = CD

Xét t/g OEB và t/g ODC có:

OEBˆ=ODCˆ=90o(gt)OEB^=ODC^=90o(gt)

BE = CD (cmt)

ABDˆ=ACEˆABD^=ACE^ (2 góc tương ứng do t/g ABD = t/g ACE)

=> t/g OEB = t/g ODC (g.c.g)

c/ xét t/g AOB và t/g AOC có:

AO: cạnh chung

AB = AC (gt)

OB = OC (2 cạnh tương ứng do t/g OEB = t/g ODC)

=> t/g AOB = t/g AOC (c.c.c)

=> OABˆ=OACˆOAB^=OAC^ (2 cạnh tương ứng)

=> AO là tia p/g của góc BAC

CHÚC BẠN HỌC TỐT

Khách vãng lai đã xóa
Trương Ngọc Lan Vy
Xem chi tiết
Mèo con dễ thương
Xem chi tiết
Minh Bình
Xem chi tiết
Gấuu
7 tháng 8 2023 lúc 21:43

Cách 1:
\(AC=\sqrt{BC^2-AB^2}=8\) cm

Từ D kẻ \(DH\perp BC\) tại H

Xét hai tam giác vuông DHB và DAB có:

\(\widehat{DBH}=\widehat{DBA}\) ( do BD là tia phân giác góc B)

BD chung

Nên \(\Delta DHB=\Delta DAB\left(ch-gn\right)\)

Suy ra \(HB=AB=6cm\Rightarrow HC=4cm\) và \(DH=DA\)

Áp dụng định lý pytago vào tam giác DHC vuông tại H có:

\(DC^2=4^2+DH^2\) \(\Leftrightarrow\left(AC-AD\right)^2=16+DA^2\) 

\(\Leftrightarrow\left(8-AD\right)^2=16+AD^2\)

\(\Leftrightarrow AD=3\) \(\Rightarrow BD=\sqrt{AD^2+AB^2}=3\sqrt{5}\) cm

Cách 2:

\(\dfrac{DC}{DA}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\)\(\Leftrightarrow\dfrac{DC}{5}=\dfrac{DA}{3}=\dfrac{DC+DA}{5+3}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\Rightarrow DC=5,DA=3\)

Làm tương tự như trên 

o. Tính BE

Có \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{EA}{EA+AC}=\dfrac{3}{5}\Leftrightarrow\dfrac{EA}{EA+8}=\dfrac{3}{5}\Leftrightarrow EA=12\)

\(BE=\sqrt{ED^2-BD^2}=\sqrt{\left(EA+AD\right)^2-BD^2}=6\sqrt{5}\) ( \(BE\perp BD\) do hai đường phân giác của hai góc kề bù)

Kết luận:...

Phạm Đỗ Mỹ Duyên
Xem chi tiết
do thu ha
21 tháng 8 2016 lúc 13:08

Xét tam giác ABC có :

\(bc^2\)=\(5^2\)=25

\(ab^2\)+\(ac^2\)=\(3^2\)+\(4^2\)=9+16=25   

Suy ra:\(bc^2=ab^2+ac^2\)(định lí py-ta-go đảo)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2019 lúc 17:58

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Ta có: AE là tia phân giác góc trong tại đỉnh A

      AF là tia phân giác góc ngoài tại đỉnh A

Suy ra: AE ⊥ AF (tính chất hai góc kề bù)

Vậy AE ⊥ DF.

Nguyễn Thanh Bình
Xem chi tiết